LU 1: Getting started
Aafke Schipper
A.Schipper@science.ru.nl

Background

In this first learning unit, you will be introduced to the goals and set-up of this course. The
unit will also introduce you to the interface of R and RStudio and some basic concepts,
operators and functions. You will learn how to send commands to R and how you can send
multiple commands via a script. After completing this unit, you have created and stored
your first small program in R!

Learning goals

After this first learning unit you are:

. familiar with the goals, set-up and teaching methods of the course
. able to perform basic arithmetic operations

. able to assign objects

. able to perform basic vector and matrix operations

. able to store a sequence of operations in a small script

. familiar with the why and how of R styling

Starting R and RStudio

The very first thing to arrange, before anything else, is to ensure you have R and RStudio
installed on your computer. RStudio is an application specifically designed to support R:
it provides a user-friendly, platform-independent interface that integrates R with tools for
plotting and data management and an editor to compile scripts.

In the computer rooms in the faculty, R is installed by default. If you wish to install R and
RStudio on your own computer, you can download it here:

For R: http://www.r-project.org
For RStudio: https://www.rstudio.com/products/RStudio/

These sites also contain lots of useful information on R and RStudio, including documenta-
tion, manuals, news and info on for example conferences.

mailto:A.Schipper@science.ru.nl
http://www.r-project.org
https://www.rstudio.com/products/RStudio/

THE CONSOLE WINDOW AND SOME BASIC OPERATIONS

Once installed, we can open RStudio, and we will see an interface with four windows:

€ Rrstudio -] X
File Edit Code View Plots Session Build Debug Profile Tools Help
QO - R T - -4 ~ Addins - RJ project: (None) =
@7 Untitled1* -] Environment History Connections -
| Source on Save = O /7 - =#Run *= Source - T 7* Import Dataset ~ ¥ List =
1 “} Global Environment ~
1:1 (Top Level) = R Script <
Files Plots Packages Help Viewer . [
Console =1
R version 3.5.2 (2018-12-20) -- "Eggshell Igloo"

Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'Ticense()' or 'Ticence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation() ' on how to cite R or R packages in publications.

Type 'demo()"' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> |

. The upper left window is the so-called Source window, where we can create, edit and store
scripts.

The lower left window (Console) shows the progress and outputs of running scripts and
can also be used to send commands directly.

The upper right window (Environment/History) gives an overview of all objects in the
workspace (internal memory) and the history of the current R session.

The lower right window (Files/Plots/Packages/Help/Viewer) provides the interface for
managing files, plots and packages and access to documentation (Help).

The console window and some basic operations

We will now start providing some first very simple commands to R using the console window.
You will see that R directly provides the output within the same window. Try for yourself
a few basic arithmetic operations, like in the example below, and see what happens. You
can simply use the common symbols adopted for these operations: 4+ for summation, - for
subtraction, * for multiplication and / for division.

4

[1] 4

2 learning unit 1

ASSIGNING OBJECTS

1+ 2

[1] 3

1+2+3+4

[1] 10

[1] 12

1/0

[1] Inf

0/0

[1] NaN

So, this goes all well: R provides you with the output of the operations and tells you that
dividing a number by zero gives infinity (Inf) whereas nothing divided by nothing is not a
number (NaN). Nice!l But using R only as a calculator is perhaps not the most useful. ..
What more can we do?

Assigning objects

One of the more useful things you can do with R is storing values as objects and then doing
sequences of calculations on these objects. The convention in R is to use the notation <- to
assign values to objects. For example, we can define an object x with value 3, as follows:

x <- 3
X
[1] 3

3 learning unit 1

ASSIGNING OBJECTS

So, object x is now defined and we see that it is stored in the internal memory (Environment).

€ Rstudio — O X
File Edit Code View Plots Session Build Debug Profile Tools Help
o . X * - 1 B - Addins - Rl project: (None) ~
@7 Untitled1* | Environment History Connections -
| SourceonSave = O /7 - +Run | °+ Source - g | “* Import Dataset ~ _‘{ List ~
il

&goment -

1:1 (Top Level) = R Script &
Files Plots Packages Help Viewer ..[
Console -/ =
~

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'Ticense()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation() ' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-Tline help, or
'help.start()' for an HTML browser interface to help.
Type 'q()" to quit R.
> X
Error: object '"x' not found
> X <= 3
> X
[1] 3
> | v

And then, after having defined objects, we can perform all kind of calculations (the outcomes
of which we can also store as objects):

x <- 3

y <-4
X +y

[1] 7

Z<—X+y
VA

[1] 7

Note that there are some naming conventions in R:

. R is case-sensitive, so object a is not the same as object A.
. Object names cannot start with a number

. Object names cannot contain special symbols

4 learning unit 1

CREATING MORE COMPLEX OBJECTS: VECTORS

Creating more complex objects: vectors

Objects are not necessarily single values: they can also represent series of values. In R, a
vector is a basic data structure that contains a sequence of data elements (called components
or members). Vectors are typically created with the function c() (combine or concatenate),
for example:

c(1, 2, 3, 4, 5)

[1] 1 23 45

You can also use a colon to define a regular sequence, as follows:

1:5

[1] 1 23 45

In order to explore the properties of an object, R contains various useful functions:
str() tells you the structure of an object

length() tells you the length of an object

head () gives you the first 6 components of an object
tail() gives you the last 6 components of an object

For example,

my.first.vector <- 1:50
length(my.first.vector)

[1] 50

str(my.first.vector)

int [1:50] 1 23456789 10 ...

head(my.first.vector)

[1] 123 456

tail(my.first.vector)

[1] 45 46 47 48 49 50

It is also possible to retrieve a particular element from a vector based on its position:

) learning unit 1

Exercise 1 CREATING MORE COMPLEX OBJECTS: MATRICES

my .next.vector <- c(2, 4, 6, 8, 10)
my.next.vector[3] # retrieve the third element

[1] 6

And you can perform arithmetic operations with vectors, just like you can with scalars (single
values), for example:

x <- 1:10
y <=3
X +y

[1] 4 5 6 7 8 9 10 11 12 13

Fzxercise 1

1. Create a vector A of 10 consecutive even numbers starting from 2.
2. Create a second vector B of two values: 2 and 4.
3. Sum the two vectors. What happens?

Creating more complex objects: matrices

Most of the datasets you will work with in practice are more than single sequences of values
(vectors), but typically consists of multiple sequences of values. A matrix is a collection of
elements arranged into a two-dimensional structure with a fixed number of rows and a fixed
number of columns. Suppose we want to create a matrix of two rows and three columns
filled by odd numbers starting from 1, you can do the following;:

my.first.matrix <- matrix(c(1, 3, 5, 7, 9, 11), nrow = 2, ncol = 3, byrow = TRUE)
my.first.matrix

[,11 [,2] [,3]
[1,] 1 3 5
[2,] 7 9 11

As you see, the rows and columns each have an index, which you can use to select elements.
For example, to retrieve the element in row 2 and column 3, you can do the following:

6 learning unit 1

Exercise 2 FUNCTIONS

my.first.matrix[2, 3] # get the element in row 2, column 3

[1] 11

It is also possible to retrieve an entire row or column, for example:

my.first.matrix[1, 1 # get the elements in row 1

[1]1 1 3 5

my.first.matrix[,1] # get the elements in column 1

[1] 1 7

Fxercise 2

Create a 3x3 matrix named A filled row wise by the numbers 1 to 9.

Inspect the structure of the matrix.

Create a matrix B by dividing matrix A by 2.

Retrieve from B the elements in the second row and second and third column. Store
these as vector C.

5. Sum the two selected elements. What is the answer?

Ll

Functions

Up to now, you have already encountered various examples of functions: instructions to carry
out specific tasks. Further on in the course you will learn how to build functions yourself.
Here, we will have a closer look at some built-in functions in R:

c() combines different elements into a vector

sum() calculates the sum of a series of numbers

mean () calculates the arithmetic mean of a series of numbers

sd () calculates the standard deviation of a series of numbers
objects() tells you which objects there are in the environment

1s () same: tells you which objects you have defined in the environment
rm() removes an object

Functions typically need input, which you define between the parentheses. For example,

7 learning unit 1

FINDING HELP ON FUNCTIONS AND SPECIFYING ARGUMENTS

x <- 1:5
y <- sum(x)
z <- mean(x)

Some functions go without input, so you can leave empty the space within the parentheses:

objects()
[1] "my.first.matrix" "my.first.vector" "my.next.vector" "x"
[5] llyH |lzl|

But how do you know what input you should and can feed into a function?

Finding help on functions and specifying arguments

Fortunately R has a built-in help system to consult. To get help on a particular function,
you can use help or 7. If you try, for example, help(sum), you will get to the documenta-
tion of the function in the bottom right window, which explains the information (so-called
arguments) you have to pass on to the function. In case of the sum function, for example,
the documentation tells you that you need to pass one or more vectors of values (denoted by

..) as input and that there is a second argument na.rm. This second arguments specifies
how the function treats missing values (NA) or values that are not a number (NaN). If you
do not specify this argument explicitly, R will use a default. The default arguments for each
function are also described in the help documentation. In the case of the sum function, the
default is that these NA and NaN values are not removed (which means that in case of NA
or NaN values in your series of values, the resulting sum will be NA). For example,

y <- c(1, 2, 3, NA, 5)
sum(y)

[1] NA

sum(x = y, na.rm = TRUE)

[1] 11

Fxercise 3

1. Create a 2x2 matrix B filled column wise with the following contents: 2, 4, NA, 6.
2. Sum across the matrix.

3. Check the objects you have in the environment.

4. Remove all these objects using the rm() function. Use the help function if needed.

8 learning unit 1

Exercise 4 THE SOURCE WINDOW

FExercise 4

1. Use the help function to find out how you can calculate weighted means in R using
the function weighted.mean.

2. Apply the function to calculate the mean of 2, 4 and 6 weighted by, respectively, 0.25,
0.25 and 0.50.

The source window

So far we’ve been working only within the console, which is very interactive: we provided
a command, R executed this, we did another command, R executed this again, and so
on. However, this is not the most efficient and reproducible way of working: suppose the R
environment is cleaned, all you did is lost and you have to reconstruct your work. So, as soon
as data processing gets a bit more involved, it is recommended to create scripts to organise
your work. It speeds up things and enhances reproducibility - one of the key requirement of
scientific research.

Scripts are being created in the Source window (in the upper left). A script is basi-
cally a set of commands, commonly intertwined with annotation to provide a bit of ex-
planation of what’s happening. Comments are preceded by a hashtag, which tells R that
the text that follows can be ignored in the execution. So, let’s go to the Source win-
dow, and create our very first script by entering the code as shown in the picture below:

€ Rrstudio -] X
File Edit Code View Plots Session Build Debug Profile Tools Help
O -G L - + - Addins - & Project: (None) -
@7 Untitled1* -] Environment History Connections —
] Source on Save | L A - +Run = Source = g # Import Dataset ~ | & List ~
1 # this is my very first R script! e ——
2
3 # create objects values
4 x <- 1:10 X 3
5 y<-5
6 z <- X+ Y
7
8 # calculate statistics Files Plots Packages Help Viewer .. [
9 mean(z)
10 sd(z)
11
11:1 (Top Level) 3 R Script £
Console =

>

9 learning unit 1

SAVING SCRIPTS AND QUITTING R

You will see that nothing is happening when you type the script (contrary to working in
the console, when all commands are executed directly). In order to execute your script, you
need to send it to the console. You can do this by selecting the script and then either press
‘Run’ or do Cntrl + Enter.

€9 Rstudio - O X

File Edit Code View Plots Session Build Debug Profile Tools Help

[+ I+ » . i - Addins - & Project: (None) ~
@] untitled1* =[] Environment History Connections =]
: | [|SourceonSave O /7 - +Run | °* Source ~ g # Import Dataset - | & = List -
:12. # this is my very first R script! Run the current line "} Global Environment ~
3 # create objects or selection (Ctrl values
4 x <= 1:10 +Enter) X 3
5 y <=5
6 Z <X+ Y
7
8 # calculate statistics Files Plots Packages Help Viewer . [~
9 mean(z)
10 sd(z)
11
1:1 (Top Level) s R Script =
Console =1

>

Saving scripts and quitting R

To save a script, you could use File - Save as and store your script in the directory of choice.
If you use Save rather than Save As, R will save your script in the default working directory.
To find out which one this is, you can use the function getwd() - without anything in the
brackets as this function does not need any arguments. When saving, R scripts always get
the extension .R. You can quit the R session via q(), Cntrl + Q, File - Quit session or
just by clicking the X in the top right corner. When you quit, R will ask you whether you
want to store the workspace. In most cases this is not really needed, as in a new session
you could simply open the script you saved and re-generate the data in the environment.

10 learning unit 1

Exercise 5 SAVING SCRIPTS AND QUITTING R

File Edit Code View Plots Session Build Debug Profile Tools Help
o . O » . - - Addins - RJ Project: (None) -
@] untitled1* | Environment History Connections -]
: | Source onSave = O /- = Run | °= Source = | “* Import Dataset - y List =
:'I2. # this is my very first R script! BT ——
3 # create objects values
4 x <- 1:10 X 3
5 ¥ <=5
6 Z<-X+Yy
? —
8 # calculate statistics UQuitRSession ? KX s Plots Packages Help Viewer .. [
9 mean(z)
10 sd(z) =
11 'e‘ Save workspace image to ~/.RData?
L
| Save ‘ | Don't Save Cancel
1:1 (Top Level) = IUNPT S
Console =]

>

Fxercise 5

In this exercise we will create a small script that calculates intrinsic population growth
rates of warm-blooded animals from their body mass, according to the following equation
(Hendriks et al. 2007 Ecological Modelling 205:196-208; Hilbers et al. 2016 Ecology 97:615-
626):

rm = In(RO) . qt . gamma . m”-k

where rm is the intrinsic population growth rate (n/d); RO is the life-time fecundity (number
of individuals); qt is a body temperature correction factor relative to the standard temper-
ature of 20°C (dimensionless), gamma is the average production coefficient (kg"k/d), m is
the species’ bodymass (kg) and k is the scaling exponent.

1. Create a new script that does the following:

o Create a vector with body mass values from 1 to 100 kg.

 Assign parameter values for the equation as follows (Hilbers et al. 2016 Ecology 97:615-
626): RO = 4.5; qt = 4.9; gamma = 0.27; k = 0.25

o Calculate intrinsic growth rates over the vector with body masses.

o Calculate a mean intrinsic growth rate over the body mass range.

o Compare this with the intrinsic growth rate of a species with a mean body mass.

11 learning unit 1

ADDITIONAL PRACTICING

2. Save your script.

Writing readable code

Finally, some words about good coding style. The primary reason to care about style is
readability: adopting a consistent style and annotating your code will make it much easier
to read and understand. This in turn not only helps to share your code with others, it also
makes your own life much easier. Suppose you compile a script today and want to re-run
it about half a year or so - this is a lot easier if you have clearly structured and annotated
your code and used a consistent style! Styling is partly a matter of taste; often multiple
options work. So, in principle it does not really matter what you pick, as long as your style
is consistent. However, some conventions are quite broadly adopted, and it may ease the
communication with others if you adopt those as well. For example, to assign objects, it is
better to use <- than =, so growth.rate <- 2 is better than growth.rate = 2. It is also
recommended to use spaces around operators, in order to enhance readibility, so y <- 2 +
4 is preferred over y<-2+4. And, of course, always annotate your code - for others and for
your future self!

In the links below you can find some thoughts and guidelines about styling:
https://google.github.io/styleguide/Rguide.xml
https://www.r-bloggers.com/%F0%9F %96 %8A-r-coding-style-guide /

FExercise 6

1. Open the script you created in exercise 5.
2. Check the style and annotation and improve this where you see fit.

Additional practicing

Becoming a proficient user of R requires basically three things: practice, practice and prac-
tice. This may sound a little bland, but just to make clear that it’s like learning any other
new laguage: as you have to internalize the words (vocabulary) and structure (syntax), you
need to work with the language. For additional practicing, we have arranged access to the
online course material by DataCamp, which consists of interactive exercises for different pro-
gramming languages. We recommend you to sign up, which you can do via the link below.
NOTE: use your student mail address from RU, and register within two weeks (no later than
17 September).

https://www.datacamp.com/groups/shared_links/22cecd4b5a944506d1e074e421bb78400741db61

From the DataCamp material, the first three chapters from the introduction course link up
pretty well with this learning unit (‘1. Intro to basics’, ‘2. Vectors’ and ‘3. Matrices’).

12 learning unit 1

https://google.github.io/styleguide/Rguide.xml
https://www.r-bloggers.com/%F0%9F%96%8A-r-coding-style-guide/
https://www.datacamp.com/groups/shared_links/22cecd4b5a944506d1e074e421bb78400741db61

LU 2: The Basics: Part 2

With exercises

Melinda de Jonge

m.dejonge@fnwi.ru.nl

Contents
1 Learning goals 2
2 Functions we are going to use 2
3 The basics 2
3.1 Object types 2
3.2 Checking the type of an object L. 3
3.3 Converting between object types L L. 3
3.4 Making vectors with multiple object types 5
3.5 Logical operations L 5
3.6 Strings 6
3.7 Factors. 7
3.8 Datastructures 2 9
3.8.1 Indexing by name 9
3.82 Dataframeso 10
3.8.3 Arrays 13
3.84 Listso 14
3.9 Making subsets of yourdata oL 16
3.10 Sequences 18
3.11 Sorting and orderingo 19
4 Exercises 20

mailto:m.dejonge@fnwi.ru.nl

3 THE BASICS

1 Learning goals
By the end of the class you will be able to:

use different object types, identify them and convert between them
use different data types and convert between them

generate sequences and sort/order data

create and manipulate strings

Ll o e

2 Functions we are going to use

o class(), typeof()

 as.numeric(), as.character()

o paste(), sprintf(), strsplit(), sub()
o factor(), levels()

* seq()

e sort(), order()

« rownames(), colnames|()

o data.frame(), list(), array()

« subset()

3 The basics

3.1 Object types

During the morning lectures you already learned to work with numeric objects. Besides nu-
meric objects, you can also make and use character, logical and compex objects. Character
objects are created by including any value within quotation marks ' ' or double quotation
marks " ".

a <- llall

Logical objects can only have two values: TRUE and FALSE (in some other programming
languages these are represented by 1 and 0 respectively or shortened to T and F). Their
meaning is obvious. These objects will become very important in the next learning units!

b <- TRUE #0r FALSE

Lastly, you can create complex objects in R. You probably will not need them for now,
but it’s good to know they exists. Complex objects constist of a ‘real’ part (a) and an
‘imaginary’ part (b) and are given as: a + bi.

2 learning unit 2

https://en.wikipedia.org/wiki/Complex_number

3.2 Checking the type of an object 3 THE BASICS

c <- 2 + 31

3.2 Checking the type of an object

When you are working in Rstudio, you can check the class of an object in the ‘global envi-
ronment’ panel in the top right panel of the screen. You can also check the class of objects
in the console by using typeof ().

typeof (a)
[1] "character"

typeof (c)

[1] "complex"

You can also check if an object belongs to a certain class. In this case, the response you will
get will be logical (TRUE or FALSE). For example:

is.character(a)

[1] TRUE

is.character(c)

[1] FALSE

3.3 Converting between object types

We can coerce any object type into a character object using as.character().

c.character <- as.character(c)
typeof (c.character)

[1] "character"

b.character <- as.character(b)
typeof (b.character)

3 learning unit 2

3.3 Converting between object types 3 THE BASICS

[1] "character"

You can also convert complex and logical object to numerical ones. However, in this case,
their value will change accordingly. TRUE becomes 1, FALSE becomes 0 and all complex
values will retain only their real part (notice that R will give you a warning when coercing
complex values into numerical ones).

b.numeric <- as.numeric(b)
b.numeric

[1] 1

c.numeric <- as.numeric(c)

Warning: imaginary parts discarded in coercion
c.numeric

[1] 2

You can also convert character to numerics, but only when the character object has a value
that can logically be converted.

d <_ II2|I
d.numeric <- as.numeric(d)
d.numeric

[1] 2

typeof (d)

[1] "character"

a.numeric <- as.numeric("a"

Warning: NAs introduced by coercion

a.numeric

[1] NA

4 learning unit 2

3.4 Making vectors with multiple object types 3 THE BASICS

3.4 Making vectors with multiple object types

If you make a vector or matrix with only one type, the resulting object will be assinged
that type as well. However, when you mix different types in one object, everything will be
coerced into characters.

vec <- c('1', 2, TRUE)
class(vec)

[1] "character"

3.5 Logical operations

Using R, you can do the following logical operations which will come in very handy during
the next learning units. These operations will return a logical object (TRUE or FALSE).

< less than

<= less than or equal to
> larger than
>=larger than or equal to

== equal to

= not equal to

& and

| or

A few examples of how they work:
1 == 1
[1] TRUE
1 1=1

[1] FALSE

1 1=2

[1] TRUE

1 == '1"

[1] TRUE

) learning unit 2

3.6 Strings 3 THE BASICS
1==1]1==2
[1] TRUE

1==1&1==2]1<2

[1] TRUE

CapitallLetters <- c("A", "B", "C")
CapitallLetters == c("A", "BB", "C")

[1] TRUE FALSE TRUE

3.6 Strings

Strings in R are represented by character objects

mystring <- "Zoe is a very sweet cat."
class(mystring)

[1] "character"

You can combine two or more strings using paste().

mystring2 <- "But she does not like other cats."
paste(mystring, mystring?2)

[1] "Zoe is a very sweet cat. But she does not like other cats."

If you include any non character object in the paste function, it will be coerced to character.

The same can be done using the sprintf () function.

mystring3 <- "She was born in"
year <- 2013

month <- "May"
paste(mystring3, month,year)

[1] "She was born in May 2013"

learning unit 2

3.7 Factors 3 THE BASICS

sprintf ("She was born in %s %s","May",2013)

[1] "She was born in May 2013"

You can split strings based on some separator using strsplit(string, split=' ')
strsplit(mystring, split = ' ')

[[1]]

[1] "7o0e" nig" ngn ”very" "sweet" "cat."

strsplit(mystring, split = '')

[[1]]

[1] HZI’ IIOH lle" nn |lil| HS" n.n llall n.-n "V" llell llrll lly-ll n.-n IISH ”W" llell
[18] Hell IItH n-n "C" |lall lltll n . n

It’s also possible to replace any word or character with another character using the sub()
function.

sub("May", "April", "She was born in May 2013")

[1] "She was born in April 2013"

sub("3", "4", "She was born in May 2013")

[1] "She was born in May 2014"

3.7 Factors

Categorical data can be represented as characters, however when you have a lot of data with
many classes, it may be beneficial to store these as factors instead. Factors are stored as
integers (1, 2, 3 etc.) where each integer has a label associated with it.

sex <- factor(c("male", "female", "female", "male"))
sex

[1] male female female male
Levels: female male

Factors are ordered alphabetically by default. So even though the vector above starts with
‘male’; ‘female’ will be the first level of the factor.

7 learning unit 2

3.7 Factors 3 THE BASICS

levels(sex)

[1] "female" "male"

If you don’t want to your factor to be ordered alphabetically you can specify the order
when making the factor. This is especially usefully when the factor represents some ordered
categories.

score <- factor(c("medium", "high", "low"))

levels(score)

[1] "high" "low" "medium"

score <- factor(c('"medium", "high", "low"),levels=c("low",'"medium","high"))
levels(score)

[1] "low" "medium" "high"

Using you levels argument you specify what the order of the classes in the factor should
be. Additionally, you can specify tell R that this order is meaningfull which allows you to
compare levels using, for example, logical operators.

score[1] > score[2] #Does mot work

Warning in Ops.factor(score[l], score[2]): '>' not meaningful for factors
[1] NA

score <- factor(c("medium", "high", "low"),
levels=c("low","medium","high"),ordered=TRUE)
score[1] > scorel2]

[1] FALSE

Because factors are represented as numbers in R’s memory, they are more efficient than
characters and because they have labels, they are more informative than numbers.

Working with factors can sometimes be confusing because they look like characters but
behave differently. This can be confusing when you want to convert your factor to numerical
values for example.

8 learning unit 2

3.8 Data structures 2 3 THE BASICS

constants = factor(c(3.4,12.1,9.3))
as.numeric(constants)

[1] 1 3 2

as.numeric(levels(constants))

[1] 3.4 9.3 12.1
#Alternatively

constants = factor(c(3.4,12.1,9.3,3.4))
as.numeric(levels(constants))

[1] 3.4 9.3 12.1

as.numeric(as.character(constants))

[1] 3.4 12.1 9.3 3.4

3.8 Data structures 2
3.8.1 Indexing by name

This morning you were introduced to scalars, vectors and matrices and saw how you can do
some basic arithmetics with these. You also learned how to index vector and matrices using
numbers. However, you can also give each element of a vector a name using names () for
vectors, and colnames() and rownames() for matrices. For example

weight <- c(60,80,76,72,95)
weight

[1] 60 80 76 72 95
people = c('Mary','John','Tim', 'Tracy', 'Ben')

names (weight) = people
weight['John']

John
#it 80

This is particulary helpfull when these names have some meaning. Let’s consider an example
where we have the weight and height of 5 imaginary people stored in a matrix.

9 learning unit 2

3.8 Data structures 2 3 THE BASICS

height = c(160,182,183,NA,201)

Data = matrix(c(weight, height), ncol=2, nrow=5)
colnames(Data) = c('Weight', 'Height')

rownames (Data) = people

If we now want to know how tall John is, we do not have to look up which row represents
John and which column represent height, we can just use the names.

Datal['John', 'Height']

[1] 182

3.8.2 Data frames

Usually when we want to store some data in R we use data frames instead of matrixes. One
of the advantages of using data frames is that their columns can have different object types,
while vectors and matrices can hold only one object type. Similarly to matrices, data frames
have two dimensions: the vertical dimension is constituted by the rows and the horizontal
dimension by the columns.

eyecolors = c('blue', 'brown', 'brown', 'green', 'grey"')
DataMat = matrix(c(eyecolors, height), ncol=2, nrow=5)
typeof (DataMat)

[1] "character"

class(DataMat)

[1] "matrix"

DataFrame = data.frame(eyecolors, height)
rownames (DataFrame) = people

str (DataFrame)

'data.frame': 5 obs. of 2 variables:

$ eyecolors: Factor w/ 4 levels "blue","brown",..: 1 2 2 3 4
##t P height : num 160 182 183 NA 201

10 learning unit 2

3.8 Data structures 2 3 THE BASICS

class(DataFrame)

[1] "data.frame"

rownames (DataFrame) = people

DataFrame

#it eyecolors height
Mary blue 160
John brown 182
Tim brown 183
Tracy green NA
Ben grey 201

Here you see that the character vector of eyecolors is coerces into a factor. This is the
standard behaviour for the data.frame () function. If you do not want this, you can specificy
that you want it to stay a character by including stringsAsFactors = FALSE.

DataFrame2 = data.frame(eyecolors, height, stringsAsFactors = FALSE)
str(DataFrame2)

'data.frame': 5 obs. of 2 variables:
§$ eyecolors: chr "blue" "brown" "brown" "green"
$ height : num 160 182 183 NA 201

You can extract the values from a dataframe in a similar way what you did with matrices.
You can also use the $ operator to extract columns.

extract the eyecolors column with the $ operator
DataFrame$eyecolors

[1] blue brown brown green grey
Levels: blue brown green grey

extract the eyecolors column with the [,] notation
DataFramel[, "eyecolors"]

[1] blue brown brown green grey
Levels: blue brown green grey

11 learning unit 2

3.8 Data structures 2 3 THE BASICS

extract the first row of a data frame by reference
DataFrame[1,]

#it eyecolors height
Mary blue 160

extract the first column of a data frame by reference
DataFramel[, 1]

[1] blue brown brown green grey
Levels: blue brown green grey

extract the 1st and 2nd columns and the 3rd and 5th rows
DataFrame([c(3, 5), 1:2]

eyecolors height
Tim brown 183
Ben grey 201

It’s also possible to convert a matrix into a data frame and vice versa.

as.matrix(DataFrame)

#i# eyecolors height
Mary "blue" "160"
John "brown" 182"
Tim "brown" 183"
Tracy "green" NA

Ben "grey" "201"

data.frame(DataMat)

X1 X2
1 blue 160
2 brown 182
3 brown 183
4 green <NA>
5 grey 201

12 learning unit 2

3.8 Data structures 2 3 THE BASICS

3.8.3 Arrays

All the object we have discussed so far can store data in 1 or 2 dimensions (rows and columns).
Arrays are objects that can store data in more than 2 dimensions. In this manual we only
show examples of arrays with 3 dimensions, however, arrays with or more dimensions are also
possible and have the same functionalities. Arrays are created using the array() function.

#Lets pretend we have the height and weight of 5 persons in 2 different years.

heightl <- c(160,182,183,NA,201)
weightl <- ¢(60,80,76,72,95)
height2 <- ¢(160,182,183,NA,201)
weight2 <- c(63,78,77,71,90)
dataset <- array(c(heightl,height2,weightl,weight?2) ,dim=c(5,2,2))
dataset

, , 1

H##

[,1]1 [,2]

[1,] 160 160

[2,] 182 182

[3,] 183 183

[4,] NA NA

[5,] 201 201

##

##H , , 2

##

[,11 [,2]

[1,] 60 63

[2,] 80 78

[3,1] 76 77

[4,] 72 71

[5,1] 95 90

Like with matrices and dataframes, we can name the rows, columns and matrices.

column.names <- c("2017","2018")

row.names <- people

matrix.names <- c("Height","Weight")

dimnames(dataset) <- list(row.names,column.names,matrix.names)
dataset

, , Height
##
#i#t 2017 2018

13 learning unit 2

3.8 Data structures 2 3 THE BASICS

Mary 160 160
John 182 182
Tim 183 183
Tracy NA NA
Ben 201 201

#it
, , Weight

#it

#it 2017 2018

Mary 60 63
John 80 78

Tim 76 7T
Tracy 72 71
Ben 95 90

Indexing arrays works the same as matrices and vectors, except that you now need 3 dimen-
sions.

#Show all hetght data
dataset[,, 'Height']

#i# 2017 2018
Mary 160 160
John 182 182
Tim 183 183
Tracy NA NA
Ben 201 201

#Show all data for John
dataset['John',,]

#i# Height Weight
2017 182 80
2018 182 78

Like matrices and vectors, arrays can only contain elements on one type.

3.8.4 Lists

Lists are R objects which can contain elements of different types and size inside it. In the
data frame all of the columns included must have the same lenght. In lists you can combine
vectors, matrices, data frames and arrays of different dimensions. Lists can even contain
other lists. Lets look at an example with vectors of different length.

14 learning unit 2

3.8 Data structures 2 3 THE BASICS

shortvector <- c(1,2,3)
somelist <- list(shortvector, weight)
somelist

[[1]]

[1]1 1 2 3

##

[[2]]

Mary John Tim Tracy Ben
#i# 60 80 76 72 95

You can make named lists by giving the name of the object when making the list. These
names can then be used to reference objects in the lists.

somelist <- list(sv = shortvector, height = height)
extraxt the height
somelist$height [1]

[1] 160

similarly you can use the [[]] notation and the name of the object
somelist[["height"]] [1]

[1] 160

similarly you can use [[]] notation and the reference to the position
somelist [[2]] [1]

[1] 160
Note that [1] only shows the first element in the vector of heights

Note that the class changes, and that somelist$height is a vector
class(somelist)

[1] "list"

class(somelist$height)

[1] "numeric"

Lists can be converted to vectors using the unlist () function.

15 learning unit 2

3.9 Making subsets of your data 3 THE BASICS

unlist(somelist)

svl sv2 sv3 heightl height2 height3 height4 heightb
#i# 1 2 3 160 182 183 NA 201

3.9 Making subsets of your data

We already saw how to show and manipulate data in objects using numeric or named indexes.
We can use the same strategy to subset data into new objects.

Data2017 <- dataset[,'2017"',]

Data2017

#it Height Weight
Mary 160 60
John 182 80
Tim 183 76
Tracy NA 72
Ben 201 95

We can also use logical operation to subset data. For example, we can select everyone who
is at least 180 cm tall from the previous example

TallPeople <- Data2017[Data2017[, 'Height'] >= 180,]

TallPeople

Height Weight
John 182 80
Tim 183 76
<NA> NA NA
Ben 201 95

We can split this example in steps to better understand what is happening.

indexes <- Data2017[, 'Height'] >= 180
indexes

Mary John Tim Tracy Ben
FALSE TRUE TRUE NA TRUE

16 learning unit 2

3.9 Making subsets of your data 3 THE BASICS

TallPeople <- Data2017[indexes,]

TallPeople

#it Height Weight
John 182 80
Tim 183 76
<NA> NA NA
Ben 201 95

We can use the exclamation mark (!) to negate a statement. For example, if we want to
select everyone who is shorter than 180 cm we can use Data2017[, 'Height'] < 180 or we
can use the exclamation mark.

ShortPeople <- Data2017[Data2017[, 'Height'] < 180,]

ShortPeople

#i# Height Weight
Mary 160 60
<NA> NA NA

ShortPeople <- Data2017[!Data2017[, 'Height'] >= 180,]

ShortPeople

#it Height Weight
Mary 160 60
<NA> NA NA

Alternatively, we can use the function subset () to make logical subsets of our data.

TallPeople <- subset(Data2017, Data2017[, 'Height'] > 180)

TallPeople

Height Weight
John 182 80
Tim 183 76
Ben 201 95

As you can see, the subset () function filters out the NA value.

For special values such as 0, NA, and Inf, you can use the is.null(), in.NA() and
is.infinite() functions to select or subset these.

17 learning unit 2

3.10 Sequences 3 THE BASICS

#Select only the persons who did report their height.
WithHeight <- Data2017[!is.na(Data2017[, 'Height']),]

WithHeight

#it Height Weight
Mary 160 60
John 182 80
Tim 183 76
Ben 201 95

3.10 Sequences

In the previous learning unit you already saw that you can create sequence of numbers using

1:10
[1] 1 2 3 4 5 6 7 8 910
10:1

[1] 10 9 8 7 6 5 4 3 2 1

Using the seq() function you can also create sequences with increments different from 1.

seq(from=1, to=20, by=2)

[1] 1 3 5 7 9 11 13 15 17 19

seq(from=20, to=10, by=-2) #Note the sign of the 'by' argument!

[1] 20 18 16 14 12 10

seq(from=1, to=10, length.out=15)

[1] 1.000000 1.642857 2.285714 2.928571 3.571429 4.214286 4.857143
[8] 5.500000 6.142857 6.785714 7.428571 8.071429 8.714286 9.357143
[15] 10.000000

18 learning unit 2

3.11 Sorting and ordering 3 THE BASICS

3.11 Sorting and ordering

You can sort a vector using the sort() function. This will return all the elements in the
variable in and ordered fashion. For characters, this means alphabetical order.

weight <- ¢(60,80,76,72,95)
people <- c('Mary','John','Tim', 'Tracy', 'Ben')
sort(weight)

[1] 60 72 76 80 95

sort(weight, decreasing = TRUE)

[1] 95 80 76 72 60

sort (people)

[1] llBenH IlJohnll IIMaryll llTimll llTraCyll

It’s also possible to use the order () function. This will return the ordered indexes of the
elements in the vector. We can use this to sort the vector (similar to using the sort ()
function) but also to sort another vector.

order(weight) #This returns the indexes that can be used to sort weight

[1] 14325

weight [order (weight)] #Same as sort(weight)

[1] 60 72 76 80 95

people[order(weight)] #Sort the people vector based on the values in weight

[1] uMaryll "Tracy" "Tim" "John" "Ben"

19 learning unit 2

4 EXERCISES

4 Exercises

10.

Create a matrix that contains the weights (in 2017), heights, and eyecolors for the
people as given in the manual for this learning unit. Make sure that you name the
columns and rows of the matrix.

Check the class and type of the matrix you just created. Why is the type character?

Convert the matrix created in the previous exercise to a data frame and convert weight
and height back to numerical objects.

Calculate the BMI by dividing the weight by the square of height in m and store the
results in a new column in the data frame called BMI.

For one person, the height is not known, this is indicated by a NA value. Remove this
person from the dataframe.

Make a new dataframe called ‘browneyes’ which contains the weight and height of
people with brown eyes only.

Sort the rows of the original dataframe by eyecolor first and by weight second.

Create a piece of code that gives all characteristics for a person as a sentence. For
example ‘John has blue eyes, is 190 cm tall and weight 80 kg Make sure that you
can use the piece of code for all persons in the data frame in such a way that you only
need to adjust the name.

In the Array example, the data is separated by measurement. Make a new array in wich
the data is separated by year (this means you will get an array of 5 2 by 2 matrices).

From the array generated in exercise 9, select only the people who have lost weight.

All the following exercizes are with some new data from some made up plants.

pot.diameter = c(10,8,11,40,22,15,23)
height = ¢(15,13,20,175,110,40,90)
stage = c('seedling', 'seedling','sapling', 'mature', 'mature’,

11.

'sapling', 'mature')

Create a data frame of this data called ‘PlantData’

Of course, we also have the names of these plants. Luckily, they are in already in the right

order.

20 learning unit 2

4 EXERCISES

names = c('Sansiviera zeylanica','Sansiviera trifasciata',
'Pachira Aquatica', 'Heteropanax chinensis',
'Sterlizia Nicolai', 'Monstera deliciosa',
'Howea fosteriana')

12. Give the rows of the PlantData the name of the corresponding species.

13. Of course there is a natural order in the life stages of a plant. Create an ordered factor
from the stage variable.

14. Order the dataframe based on the life stage of the plants
15. Do taller plants have a larger pot diameter

16. Split the dataset into seperate objects for each life stage

Because plant grow we also have some data from a while ago which is slightly different.

old.pot.diameter = c(5,5,15,35,21,15,20)
old.height = c(0,0,18,165,100,40,85)

17. Combine the data from the two time periods in one object
18. Order the data by the growth rate of the plants

19. Which of the Sansiviera species has grown the most?

21 learning unit 2

LU3: Data in R

With exercises, but no solutions

Michela Busana

michela.busana@ru.nl

Contents

1

2

10

11

12

Learning unit goals

The workspace and working directory
2.1 Adding & removing objects
2.2 Saving the workspace and object(s) .

Reading data files into R
3.1 R converts characters into factors . .
3.2 Reading Dates and Times from Files

Writing files to a directory

Folder structure and paths
5.1 Common errors when reading files . .
5.2 Common issues when writing files . .

Recap from LU2: Class = data.frame
6.1 Columns & rows
6.2 Sorting.

Dimensions

Adding a new column to a data frame
Rename the columns of a data frame
Checking the top and bottom

Subsetting

11.1 Specific columns & rows
11.2 Subsetting using logical operations .
11.3 Subsetting with subset()

Summary statistics by column

10
11
11

12

12

13

14

15
15
17
19

20

mailto:michela.busana@ru.nl

2 THE WORKSPACE AND WORKING DIRECTORY

13 Contingency tables
14 Duplicates and missing values

15 Join multiple datasets
15.1 Concatenate datasets horizontally or vertically
15.2 Merging datasets by column(s) L.
15.3 Setting the key columno Lo
15.4 Merging with duplicateso Lo
15.5 Merging with NA values
15.6 Typesof join

16 Recap
17 Interactive exercise

18 Exercises
18.1 Introductiono
18.2 The Lizard dataseto
18.3 The Owl dataset
18.4 The Owl and Parent IDs datasets
18.5 The Rikz dataset
18.6 Optional

1 Learning unit goals

By the end of the class we will be able to:
1. Operate with data files in R

21

22

24
24
25
26
27
28
29

32

32

2. i.e. read/write datasets in R, clean a dataset, subset a dataset, merge multiple datasets

2 The workspace and working directory

¢ [DEFINITION]

workspace = current R working environment including all user-defined objects

getwd()

working directory = the directory on the computer where R points to. Check it with

When we create a new object in R it will be saved within the workspace of the current R

session.

Try typing

2 learning unit 3

2 THE WORKSPACE AND WORKING DIRECTORY

1s()

character(0)
newObject <- c(2 , 4 , 7)
newObject

[1] 2 4 7

1s()

[1] "newObject"
1s() is a base R function that returns the list of objects present in the workspace.

Each R session is linked to a directory in our computer, the working directory. This directory
is the default path where R accesses hard files that are saved in our machines. This is handy
when we want to analyze data that have been collected and kept in a spreadsheet or a text
file, for example. Pay attention to syntax differences in Windows versus Linux/OS and
commonly related error messages.

Q | BONUS: Extra food for brain

A function is a unit of code that takes an input, operates on that input and returns an
output. We will learn more about functions in the LU7. For now note that “Is()“, for
example, is a function that is built-in in the R environment. These type of functions
usually are called base R function.

To see which working directory is linked to the current R session type:

getwd() # getwd stands for get working directory

The path returned will differ between computers and R session.
Pay attention to syntax differences between Windows and Linux/OS machines.
In a Windows machine your path will look like something;:

e c:\\user\\temp or
e c:/user/temp

In Linux and OS, the path will look like /home/user/temp or ~/temp.

It is possible to set the working directory to a specific path with the function setwd(). For
example, try modifying your working directory. On my Windows PC I can use something
like:

setwd("c:/Users/michela/Documents")

However, this path will differ among machines. For example, if I make a typo I will receive
an error that R cannot change the working directory. See for example:

3 learning unit 3

2.1 Adding & removing objects 2 THE WORKSPACE AND WORKING DIRECTORY

setwd("c:/Users/michela/Doc")

Error in setwd("c:/Users/michela/Doc"): cannot change working directory

If we try to change the working directory with setwd() and receive an error message, this
is because there is an error in the way we typed the path or the path does not exists in the
computer.

{y |BONUS: Tip

Workaround!

A good workaround to avoid problems with manually setting the working directory is to:
1. keep R scripts and data files together in the same folder of a PC

2. navigate to the Rscript via your computer folder view

3. open the Rscript with Rstudio

4. double-check your working directory with “getwd()“. Is it the correct path to the
Rscript file? If the answer is no, go back to point 1.

5. if some files are saved within subfolders of the current working directory call them
with the relative path, see below

The steps above are handy to make code reproducible across multiple machines! The
moment we share our code with peers, or we get a new PC we will be able to run the

same script without the necessity to set the path where the scripts and files are saved in
the hard drive of the PC.

2.1 Adding & removing objects

As we have seen above, it is possible to add objects to the current workspace by merely
creating a new object, e.g.

newObject <- 3
newObjectl <- 1:10
newlbject

[1] 3
newObjectl
[1] 1 2 3 4 5 6 7 8 910

Similarly, it is possible to remove an object or objects from the workspace with the function
rm().

For example:

1sO

[1] "newObject" '"newObjectl"

4 learning unit 3

2.2 Saving the workspace and otljectlTH{E WORKSPACE AND WORKING DIRECTORY

let's remove the newObject we just created
rm(newObject)
1s0

[1] "newObjectl"

it 7s also possible to remove all objects currently present in the workspace
rm(list = 1s())
1s0O

character(0)

Q BONUS: Warning

When reading new files into the workspace do not override existing functions or variables!
i.e., avoid giving objects or functions the same name as existing R objects or functions.

2.2 Saving the workspace and object(s)

It is possible to save objects from the workspace to an .RData (or .Rdata or .rdata) file.
More specifically it is possible to save:

 a single object
e a list of objects
» the whole workspace

Note that the definition of object includes vectors, matrices, arrays, data frames, and lists.

When closing RStudio, the program will ask if we want to save the workspace to an RData
file. It is recommended not to if we're going to avoid clogging the memory of our PCs. It’s
better to save files manually when needed.

A <-1:10
B <- A70.5
C <- A"1.5

save a single object
save(A, file = "objectA.RData")

save a list of objects by providing a list which includes a vector of
character strings naming the objects we want to save

save(list = c("A", "B"), file = "objectsAB.RData")

or similarly use

save(A, B, file = "AB.RData")

) learning unit 3

3 READING DATA FILES INTO R

save the whole workspace
save.image(file = "wholeWS.RData")

After typing the above code, try closing Rstudio. Try to navigate to your current working
directory. You will see the new .RData file there. Pick one of them and open it with Rstudio
and type 1s() in the Console. Depending on the file opened, 1s() will return something
different. The objects saved in the .RData file are now available to use in the new R session.

Alternatively, we can open the .RData files from the console with the 1oad () function. For
example, try:

clean the working directory

rm(list = 1s())

load the .RData file

load("wholeWS.RData")

3 Reading data files into R

R can read diffent formats of two-dimensional data files. The most commonly used are:

e .csv or comma separated values, read.csv()
e .txt or text files, read.table()
o .rds or R data serialized, which is a binary file type specific to R, readRDS ()

The object returned in the workspace is a data frame. The advantage of the .csv and .txt
formats is that they are universal formats that can be opened by a multitude of software. The
advantage of the .rds format is that rds files are way faster to read, but they are exclusively
used in R.

To read the file “myFile.csv” from your current working directory type:

data <- read.csv("myFile.csv", header = TRUE, sep = ",")

the option header = TRUE declares that the 1st row contains the column names
the argument sep = "," defines that the cells are separated by commas
head(data)

X
##H 11
2 2

AB
11
2 4
3339

To read a txt file:
data <- read.table('"myFile.txt")

To read a rds file:

6 learning unit 3

3.1 R converts characters into factors 3 READING DATA FILES INTO R

data <- readRDS('"myFile.rds")

It can be useful to check whether a filename exists in the current working directory with:

file.exists("myFile.txt")

[1] TRUE

Note that a dataset stored in a Excel format (.x1sx) can be easily converted to .csv. Open
the .x1sx file in Excel and click on File -> Save As. Change the Save as Type: value
to CSV (Comma delimited) (*.csv), click Save. Afterwards a couple of warning messages
will appear. Confirm by clicking 0K and Yes. More detailed instructions can be found here.

3.1 R converts characters into factors

R’s default behavior when reading data frames is to convert all character columns into factors.
This is something to be aware of, since characters and factors have different properties.

Let’s look at an example:

read a data frame
data <- read.csv("example.csv")

data

X xy
1 11 a
2 2 2 Db
3 3 3 ¢
4 4 4 d
5 5 b e

the class of the column y is factor
class(data$y)

[1] "factor"

if we want the column to be a character, we can use the argument
stringsAsFactors and set <t to FALSE

data <- read.csv("example.csv", stringsAsFactors = FALSE)

the class of the column %s now a character

class(data$y)

[1] "character"

In general, it is preferred to use factors rather than characters because factors use less memory
and computations with factors are faster than computations with characters.

7 learning unit 3

https://www.ablebits.com/office-addins-blog/2014/04/24/convert-excel-csv/

3.2 Reading Dates and Times from Files 5 FOLDER STRUCTURE AND PATHS

3.2 Reading Dates and Times from Files

Dates and times need to be handled carefully.

Typically, it is better to read dates and times as character strings and then convert them
into dates or times within R.

Understanding how to handle dates in R is beyond the scope of this lecture. If you are
interested in learning more check this blog.

4 Writing files to a directory

It is also possible to write to file a matrix or data frame created in R with the functions:

e write.csv() to a .csv file
e write.table() to a .txt file
e writeRDS() to a .rds file

1:5, y = 1:5/4, z = (1:5)71.2)

dat <- data.frame(x
write a csv file
write.csv(dat, file

"writeToFile.txt")

write a tzt file
write.table(dat, file = "writeToFile.txt")

The file is saved by default in the working directory.

Q BONUS: Recap

R can read and write data from/to a file stored on the hardware of your PC. The most
common used formats for external files are .csv, .txt, and .rds.
Use the functions read.csv(), read.table(), readRDS() to read from a file; and the corre-
spective write.csv, write.table(), writeRDS() to write to a file.

5 Folder structure and paths

Keeping a folder structure within the working directory is useful. Ideally, we would want
three or four subfolders:

1. RawData = in this directory store all the original datasets as collected in the field or
lad, or downloaded from an open-source website

2. DerivedData = store here all the derived datasets that are obtained from the raw
datasets after applying some transformation, such as cleaning errors, or reorganizing
the columns

8 learning unit 3

https://r4ds.had.co.nz/dates-and-times.html

5.1 Common errors when reading files 5 FOLDER STRUCTURE AND PATHS

3. Metadata = store here the documentation of the datasets
4. Scripts = additionally, we might want to keep our scripts in a separate directory

This structure is ideal for keeping your files in order! However, other structures are possible
and you can make your own.

It is possible to access files in R in slightly different ways. For example, assume that my
current working directory is c:/user/currentWD/ and that the folder currentWD contains
a subfolder called RawData, which then includes a file called dataset.csv. We need to read
the dataset.csv into R. There are at least three equivalent ways of achieving this:

o change the working directory setwd("c:/user/currentWD/RawData/") and read the
file read.csv("dataset.csv") (the option we used so far)

e read.csv(file = "c:/user/currentWD/RawData/dataset.csv") = use the absolute
path of the file (i.e., the path to the file followed by the name of the file)
e read.csv(file = "./RawData/dataset.csv") = use the relative path with respect

to the current working directory (i.e., which folder I have to look into starting from
the current working directory, c:/user/currentWD/). Note that the dot . at the
beginning of the relative path stands for here, which is equal to the current working
directory.

Similarly, if we wanted to write a file called dataset.txt to the c: /user/currentWD/DerivedData
directory, and the current working directory is "c:/user/currentWD/" we could:

» change the working directory setwd("c:/user/currentWD/DerivedData/") and write
the file write.table("dataset.txt")

e write.table(file = "c:/user/currentWD/DerivedData/dataset.txt") = use its
absolute path
e write.table(file = "./DerivedData/dataset.txt") = use the relative path from

the current working directory (c:/user/currentWD/)

Note that the use of a relative path is preferred because it will contribute to making
your code transferrable among computers! If you copy paste all the files in your working
directory to a new location, the relative path with respect to the current working directory
will always be the same, while the absolute path will change.

Q BONUS: recap

Keep your files organized! It will save you a lot of headaches when looking for the files
you need. It is recommended to use the relative paths to access files to make your code
more transferrable and reproducible.

5.1 Common errors when reading files

If we try to read a file that does not exist, or we misspell the name of a file or we call a file
from a non-existing/wrong working directory, we will receive an error message. For example,

9 learning unit 3

5.2 Common issues when writing files6 RECAP FROM LU2: CLASS = DATA.FRAME

if we try to read a file from the wrong working directory, we get an error:

df <- read.csv("examplel.csv")

Warning in file(file, "rt"): cannot open file 'examplel.csv': No such file
or directory

Error in file(file, "rt"): cannot open the connection
To fix the error look for the file in your computer ask yourself the following questions:

o Does the file exist? If not, create the file.

o If the answer to the previous answer is correct, did I write the name of the file correctly?
If not, correct the typo.

o If the answer to the previous answer is correct, did I call the file from the correct
working directory? If not, either change the working directory, or mention the path to
the file, or a combination of the two.

5.2 Common issues when writing files
Did you ever write a file from R, but cannot find the file in the PC where you expected it
to be? If the answer is yes, you most likely wrote the file to a different directory!

Be aware that R writes a file to the working directory, unless it is otherwise specified (i.e. the
absolute or relative pasth is added in front of the file name).

6 Recap from LU2: Class = data.frame

In the LU2 we learned the basics of data frames. As a recap, a data frame in R is an object
of a specific class: data.frame

what is the class of the object?
class(dat)

[1] "data.frame"

The data.frame class stores data in a two-dimensional format. A matrix object is also
two-dimensional, but data frames differ from matrices because they can hold multiple data
types, e.g., some columns can be factors and some columns can be numeric.

For a recap about data structures in R go back to LU2 and watch this short video.

It is also possible to check the object type of each column in the data frame:

check the class for each column
sapply(dat, class)

10 learning unit 3

https://vimeo.com/130411487

6.1 Columns & rows 6 RECAP FROM LU2: CLASS = DATA.FRAME

#it X y z
"integer" '"numeric" "numeric"

6.1 Columns & rows

We can explore the names of the columns and rows of a data frame:

check the column names
colnames (dat)

#i# [1] "X" ||yu uzn

colnames() is equivalent to names()
names (dat)

[1] IIXII Ilyll |IZI|

check the row names
row.names (dat)

[1] lllll H2ll II3H ll4|l I|5l|

6.2 Sorting

You can also sort the data frame according to one or more columns.

df <- data.frame(x = c(7, 6, 6, 5), y = c("a", "z", "c", "m"))
sort the dataframe according to the column

df <- df[order(df$x),]

df

#H xy
4 5 m
2 6 z
3 6 c
1 7 a

sort the dataframe by x= and then y
df <- df [order(dfx, dfy),]
daf

X
4 5
3 6
2 6
1 7

M N OB <

11 learning unit 3

8 ADDING A NEW COLUMN TO A DATA FRAME

7 Dimensions

A data.frame has two dimenstions. The first dimension refers to the rows, while the second
dimension refers to the columns. Each row corresponds to the values corresponding to a
specific observation. Each column contains the values for a variable. This means that a
column contains a single data type, while rows can contain multiple data types (e.g., both
factors and numeric values).

Multiple functions can be used to check the dimensions of a data frame: dim(), nrow(), and
ncol().

what are the dimension of the data frame?
dim(dat)

[1] 5 3

how many Tows?
nrow(dat)

[1]1 5

how many columns?
ncol(dat)

[1] 3

note that the number of rows <s equivalent to
dim(dat) [1]

[1] 5

and the number of columns id equivalent to:
dim(dat) [2]

[1] 3

8 Adding a new column to a data frame

It is possible to add a new column to a data frame. For example:

colnames (dat)

[1] "X" uyu uzn

add a new column containing the squared wvalues of
dat$x2 <- dat$x"2
colnames(dat)

[1] qul ||y|| "Z" "X2"

12 learning unit 3

9 RENAME THE COLUMNS OF A DATA FRAME

multiply the © and z columns and save the result in a column zz
dat$xz <- dat$x * dat$z

9 Rename the columns of a data frame

We can rename the columns and rows of a data frame, such as:

colnames (dat)

[1] ”X" ||y|| "Z" "X2" "XZ”

rename the columns

colnames(dat) <- c("a", "b", '"c", "d")

rename the Tows

row.names (dat) <- letters[l:nrow(dat)]

if you are not familiar with the function letters type ?letters in the console

check the modified data frame
colnames(dat)

[1] Ilall I|'bll |ICI| lldll NA

row.names (dat)

[1] Ilall nbn "C" ndu nen

We can also rename a single specific column:

rename the column by reference, the first column
colnames(dat) [1] <- "A"

check the modified data frame

colnames(dat)

[1] uAu ubn "C" "d" NA

similarly we can rename the column by name
here rename the column calles b
colnames(dat) [colnames(dat) == "b"] <- "B"

check the modified data frame
colnames(dat)

[1] uAu uBn "C" "d" NA

13 learning unit 3

10 CHECKING THE TOP AND BOTTOM

10 Checking the top and bottom

Large data frames cannot be visualized entirely in the R console, simply because it does not
fit!

The Nijmegen_ trees.csv dataset is a survey of the trees present in the municipality of Ni-
jmegen. It was downloaded from the webpage of the municipality.

For each tree we know the species name (species_name), the horticultural variety (BOOM-
SOORT), the postcode (postcode_nummer), the neighborhood (wijk), the year in which the
tree was planted (PLANTJAAR), a unique identifier (ID), the location in longitude (x) and
latitude (y).

trees <- read.csv("./RawData/Nijmegen trees.csv")

type trees in the console. What do you see?
trees

It is possible to visualize only the top and the bottom of the data frame by using the functions
head() and tail().

to see the first sixz lines of the data type:

head(trees)

BOOMSOORT postcode_nummer wijk PLANTJAAR ID X y
1 Abies 6663 Lent 0 72044 188589.2 430846.9
2 Abies 6663 Lent 0 72045 188593.2 430833.8
3 Abies 6663 Lent 0 72039 188638.4 430851.8
4 Abies 6663 Lent 0 71971 188535.2 430885.3
5 Abies 6532 Goffert 2010 12848 186246.1 426743.9
6 Abies 6532 Goffert 2010 59400 186323.2 426174.0
species_name

1 Abies

2 Abies

3 Abies

4 Abies

5 Abies

6 Abies

to visualize the last siz lines of the dataset type:

tail(trees)

BOOMSOORT postcode_nummer wijk PLANTJAAR ID X
61987 <NA> 6541 Biezen 2017 71573 186692.8
61988 <NA> 6546 't Acker 2017 65936 182992.4
61989 <NA> 6546 't Acker 2017 65976 182846.7
61990 <NA> 6541 Biezen 2017 71581 186699.7
61991 <NA> 6515 Oosterhout 2017 66963 186301.8

14 learning unit 3

https://opendata.nijmegen.nl/dataset/geoserver-bomen-nijmegen

11 SUBSETTING

61992 <NA> 6531 Hazenkamp 2017 67245 186766.8
#it y species_name
61987 428566.2 <NA>
61988 427337.7 <NA>
61989 426722.1 <NA>
61990 428517.9 <NA>
61991 4331568.4 <NA>
61992 427855.0 <NA>

in RStudio we can use the View() to open the data in a viewer
View(trees)

11 Subsetting

By subsetting a data frame we retrieve a portion of the data frame. Subsetting
is a handy tool in data management that allows carrying further analyses on the portion of
interest in the data frame. We will see some examples later.

11.1 Specific columns & rows

Q BONUS: To clarify and recap

The [,] and $ are alternative notations to access specific columns of a data frame or, in
other words, to subset it. With [,] we can subset both rows and columns, while with $
we can access rows only. You learned about [,] notation in the LU2.

A column of a data frame can accessed by reference or by name. The refence
indicates the position of the columns. For example, the first column has position 1, the
second column has position 2 and so on. The name refers to the name of the column.

We already learned in LU2 that we can access the columns of a data frame from the data
frame itself:

we can access the first column of a data.frame by reference
dat[, 1]

[1] 123 45

or similarly by column name

dat [, ”X“]

Error in ~[.data.frame (dat, , "x"): undefined columns selected

we can also use the $ sign
dat$x

15 learning unit 3

11.1 Specific columns & rows 11 SUBSETTING

NULL

Howewver, the columns do NOT exzist in the global environment.
We get an error if we try to access the column a from the global environment:
X

Error in eval(expr, envir, enclos): object 'x' not found

{j BONUS: Tip

In a dataset, the columns names and rows are locally recognizable within the dataset,
but they do not belong to the global environment.

To access two or more columns at the same time use:

dat <- data.frame(x = 1:5, y = 1:5/4, z = (1:5)71.2, x2 = (1:5)72)

access columns 1 and 3 by reference
dat[, c(1, 3)]

access columns 1 and 3 by name

dat [, C("X” , "Z”)]

We can also access a row or multiple rows simultaneously:

access a Tow by reference
dat[1,]

access multiple Tows
dat[2:4, 1]

or similarly you can use
dat[c(1, 3, 4), 1]

We can also access a mixture of rows and columns, e.g.

dat[1:2, c("y", "z")]

{y |BONUS: Tip

Be careful when subsetting just one column! The output will be a vector, not a
data.frame, unless you tell R by adding the argument drop = FALSE

For example:

this code returns a new data frame
class(dat[, c("x", "z")]1)

[1] "data.frame"

this code returns a wvector
class(dat[, c("x")])

16 learning unit 3

11.2 Subsetting using logical operations 11 SUBSETTING

[1] "integer"

Fiz this by adding the argument drop = FALSE
this code returns a data.frame

class(dat[, c("x"), drop = FALSE])

[1] "data.frame"

Omitting spefic rows and columns by reference is possible.

omit the first row

dat[-1, 1]

0 x y z x2
2 2 0.50 2.297397 4
3 3 0.75 3.737193 9
4 4 1.00 5.278032 16

5 5 1.25 6.898648 25

omit the second row and first column

dat[-2, -1]

y z x2
1 0.25 1.000000 1
3 0.75 3.737193 9
4 1.00 5.278032 16
5 1.25 6.898648 25
dat

0 x y z x2
1 1 0.25 1.000000 1
2 2 0.50 2.297397 4
3 3 0.75 3.737193 9
4 4 1.00 5.278032 16
5 5 1.25 6.898648 25

omit a mizture of rows and columns
dat[-c(1, 3), -c(1, 3), drop = FALSE]

#i# y x2
2 0.50 4

4 1.00 16
5 1.25 25

11.2 Subsetting using logical operations

We might be interested in creating a subset of the data where a particular condition applies.
To subset the data, we can create a logical vector indicating whether or not this condition

17 learning unit 3

11.2 Subsetting using logical operations 11 SUBSETTING

applies and pass it within the [,] notation.

create a logical vector that meets the condition where
the = variable s >=2
dat$x >= 2

[1] FALSE TRUE TRUE TRUE TRUE

pass the logical vector within the [,] notation
dat[dat$x >= 2,]

##H x y z x2
2 2 0.50 2.297397 4
3 3 0.75 3.737193 9

4 4 1.00 5.278032 16
5 5 1.25 6.898648 25

we only see the obserwvations when the condition is TRUE

note that the logical wvector can be defined by a multitude of comparisons
log vec <- c(dat$x >= 2 & dat$y < 1)
dat[log_vec,]

x y z x2
2 2 0.50 2.297397 4
3 3 0.75 3.737193 9

Subsetting using logical operations can be tricky when the data frame includes missing values
(NA).
See an example:

newDat <- data.frame(x = 1:5, y = c(NA, NA, 6, 9, NA))
set a logical vector with the condition y > 7
newDat$y > 6

[1] NA NA FALSE TRUE NA
How does output look like?

If we supply this logical vector within [,] we get a messy output
newDat [newDat$y > 6,]

#i# X ¥y
NA NA NA
NA.1 NA NA
4 4 9
NA.2 NA NA

18 learning unit 3

11.3 Subsetting with subset () 11 SUBSETTING

this can be solved with the function which
newDat [which (newDat$y > 6),]

xy
4 4 9

The function which() removes the missing values from a logical vector.

Q BONUS: Recap

Logical vectors which return a Boolean vector (TRUE or FALSE) can be used to subset
a dataset when a condition in TRUE.
Remember to use which() if the logical vector contains NA values.

11.3 Subsetting with subset ()

subset () is a base R function that returns subsets of vectors, matrices or data frames which
meet specific conditions as specified by a logical vector. The function subset omits NA
values by default.

df <- data.frame(x = 1:20, y = (1:20) ~ 2)
subset the data where = equals y
subset(df, x == y)

##H xy
1 1 1

This function can be sometimes problematic because the logical expression used to subset
the data can refer to objects specified in the global environment.

For example:

df <- data.frame(A = 1:20, B = (1:20) ~ 2)

th <- 300

in the following example, B s a column of df, while th is an object
of the global environment

subset(df, B > th)

A B
18 18 324
19 19 361
20 20 400

19 learning unit 3

12 SUMMARY STATISTICS BY COLUMN

Q BONUS: Recap

The function subset() is similar to the use of logical vectors to subset a data frame.

12 Summary statistics by column

The function summary () provides some summary statistics for each column of the data frame.
More specifically:

o if the column class is integer or numeric:

— min and max values

— the mean and median

— 1% and 2"? quartiles

— when missing values (NA and NaN) are present, how many they are

o if the column class is a factor:

— the number of occurrences per factor level
— the number of incidences of missing values (NA and NaN)

let's look again at the trees dataset

summary (trees)

BOOMSOORT postcode_nummer wijk

Quercus robur : 7070 Min. 16511 Meijhorst : 6071
Tilia x europaea : 3833 1st Qu.:6525 't Acker : 4765
Fraxinus excelsior: 3546 Median :6536 Zwanenveld : 4617
Fagus sylvatica : 2363 Mean :6541 Goffert 1 4187
Quercus rubra 1 2292 3rd Qu.:6542 Lent . 3630
(Other) 142853 Max. 16663 Brakkenstein: 3472
NA's : 35 (Other) : 35250
PLANTJAAR ID X y

Min. : 0 Min. : 1 Min. :180574 Min. 1422747

1st Qu.:1970 1st Qu.:17517 1st Qu.:183793 1st Qu.:425443
Median :1985 Median :35604 Median :185882 Median :426896
Mean 11979 Mean :36036 Mean : 185708 Mean 1427069
3rd Qu.:2002 3rd Qu.:54250 3rd Qu.:187447 3rd Qu. :428096
Max. :2019 Max. : 73355 Max. : 190868 Max. 1434031
#

#i# species_name

(Quercus robur . 8367

Tilia europaea 1 4477

Fraxinus excelsior: 4184

Carpinus betulus : 2842

20 learning unit 3

13 CONTINGENCY TABLES

Fagus sylvatica : 2787
(Other) 139300
NA's 35

13 Contingency tables

Q | BONUS: Definition |

The function table() creates tabular results of factor levels in categorical variables; in
other words, the function counts the occurrence of factor levels.

It is handy both when exploring a dataset interactively and both to make summary tables
for a manuscript.

For example, if we want to know if the trees data are balanced and check if the number of
observations in different neighborhood differ, we can type:

table(trees$wijk)

##

#i# Altrade Biezen Bottendaal Brakkenstein De Kamp
#it 1115 2938 959 3472 3165
#it Galgenveld Goffert Grootstal Hatert Hazenkamp
1610 4187 2882 3450 2397
#it Hengstdal Heseveld Hunnerberg Lent Meijhorst
2875 1846 1481 3630 6071
Neerbosch-0Oost Oosterhout Stadscentrum 't Acker Weezenhof
#i# 1621 2958 2124 4765 1750
#it Wolfskuil Zwanenveld

2079 4617

what does the table tell?

To check how many trees have been planted after 2017 we can create a logical vector that
returns TRUE if the PLANTJAAR size is > 2017 and FALSE otherwise and pass the logical
vector to the function table().

table (trees$PLANTJAAR > 2017)
##

FALSE TRUE
60785 1207

to check missing values we can set the useNA argument to always
table(trees$PLANTJAAR > 2017, useNA = "always")

21 learning unit 3

14 DUPLICATES AND MISSING VALUES

##
FALSE TRUE <NA>
60785 1207 0

To check the trees planted after 2017 in each neighborhood of Nijmegen we can supply both
variables to table():

table(trees$wijk, trees$PLANTJAAR > 2017)

##

H## FALSE TRUE
Altrade 1097 18
Biezen 2841 97
Bottendaal 947 12
#it Brakkenstein 3456 16
De Kamp 3102 63
Galgenveld 1570 40
Goffert 4156 31
#i# Grootstal 2780 102
Hatert 3409 41
Hazenkamp 2364 33
Hengstdal 2846 29
Heseveld 1827 19
Hunnerberg 1443 38
Lent 3376 254
Meijhorst 6039 32
Neerbosch-0Oost 1605 16
Oosterhout 2786 172
Stadscentrum 2050 T4
#it 't Acker 4734 31
Weezenhof 1736 14
Wolfskuil 2033 46
Zwanenveld 4588 29

14 Duplicates and missing values

Sometimes datasets are messy.
For example, some rows might be duplicated. The base R functions duplicated(), and

unique () can help us dealing with that.

dat <- data.frame(A = c(1, 2, 3, 1), B = c(4, 8, 9, 4))
duplicated() tells us if some rows in a data frame are duplicates
duplicated(dat)

22 learning unit 3

14 DUPLICATES AND MISSING VALUES

[1] FALSE FALSE FALSE TRUE

to remove duplicated rows use the function unique()
unique_dat <- unique(dat)

check the new data

unique_dat

#* A B
11 4
##H 2 2 8
3 39

Sometimes field biologists can record only part of the variables for a specific observation. The
variable(s) that cannot be recorded will be missing in the dataset. A missing value is typically
identified as NA or NaN. The base R functions any(), is.na() and complete.cases() can
help us dealing with that.

Let’s look at an example with a missing value:

dat <- data.frame(A = c(1, 2, 3, NA), B = c(4, NA, 9, 7))
to check <f there are missing values type
any(is.na(dat))

[1] TRUE

to remove missing values type from the column A
dat [complete.cases(dat$A),]

A B
11 4
2 2 NA
3 3 9

to remove missing values from all columns type
dat [complete.cases(dat),]

#* A B
114
3 3 9

Q BONUS: Recap

Remember to check a data frame carefully when starting to work with it. Often dataset
can be messy and contain mistakes.

Many base R functions can help us with dealing with messy datasets: duplicated(),
unique(), any(), is.na(), and complete.cases|()

23 learning unit 3

15 JOIN MULTIPLE DATASETS

15 Join multiple datasets

Often the data we need to answer a research question comes from multiple datasets and in
order to answer the question we need to join them. Not to worry! R provides multiple base
R functions to achieve that.

15.1 Concatenate datasets horizontally or vertically

Q | BONUS: Definition |

Concatenating datasets means that we add rows of columns from one dataset to another.

It is possible to join two data frames:

« vertically with the base R function rbind() (r here stands for row) when the two
datasets have the same number of columns and same column names

 horizontally with the base R function cbind() (c here stands for column) when the
two datasets have the same number of rows

An example with rbind ():

teachersLUl_3 <- data.frame(name = c("Aafke", "Melinda", "Michela"),
LU = c(1, 2, 3))
teachersLU4 5 <- data.frame(name = c("Coline", "Juan"), LU = c(4, 5))

rbind(teachersLUl 3, teachersLU4_5)

name LU
1 Aafke 1
2 Melinda 2
3 Michela 3
4 Coline 4
5 Juan 5

An example with cbind ():

teachersLUl 5 <- data.frame(name = c("Aafke", "Melinda", "Michela", "Coline",
"Juan"), LU = 1:5)

dates <- data.frame(LU = 5:1, date = c("09-18", "09-11", "09-11", "09-04",
“09_04”))

note that this is messy! The dates are mized up
cbind(teachersLUl_5, dates)

#it name LU LU date
#it 1 Aafke 1 5 09-18

24 learning unit 3

15.2 Merging datasets by column(s) 15 JOIN MULTIPLE DATASETS

2 Melinda 2 4 09-11
3 Michela 3 3 09-11
4 Coline 4 2 09-04
5 Juan 5 1 09-04

one workaround here is to order the data according to the same column:
cbind (teachersLUl 5[order(teachersLUl 5$LU),], dates[order(dates$LU), 1)

name LU LU date
1 Aafke 1 1 09-04

2 Melinda 2 2 09-04
3 Michela 3 3 09-11
4 Coline 4 4 09-11
5 Juan 5 5 09-18

but it recommended to use the function merge() instead, see below

15.2 Merging datasets by column(s)

Q | BONUS: Definition |

It is possible to merge datasets that contain one or a set of columns that uniquely identify
the observations and that can be used as keys to link the two datasets.

For example

teachersLUl 5 <- data.frame(name = c("Aafke", "Melinda", "Michela", "Coline",
"Juan"), LU = 1:5)
teachersLU1l b5

name LU
1 Aafke
2 Melinda
3 Michela
4 Coline
5 Juan

dates <- data.frame(LU = 5:1, date = c("09-18", "09-11", "09-11", "09-04",
"09—04"))

a b w N -

dates

LU date
1 5 09-18
2 4 09-11
3 3 09-11
4 2 09-04

25 learning unit 3

15.3 Setting the key column 15 JOIN MULTIPLE DATASETS

5 1 09-04

contain the same column LU which can be used to link the two datasets
additionally each data.frame contains unique values

merge (teachersLUl 5, dates)

LU name date

1 1 Aafke 09-04
2 2 Melinda 09-04
3 3 Michela 09-11
4 4 Coline 09-11

5 5 Juan 09-18

this new merged dataset ts clean!

15.3 Setting the key column

The function merge() by default uses the column(s) with common names between the two
data frames as keys to join them. It is also possible to specify the column names manually
using the arguments by.x and by.y, where x refers to the first dataset and y to the second
one. For example:

teachersLUl 5 <- data.frame(name = c("Aafke", "Melinda", "Michela", "Coline",
"Juan"), LU = 1:5)
teachersLUl_5

name LU
#4 1 Aafke
2 Melinda
3 Michela
4 Coline
5 Juan 5

S W N -

dates <- data.frame(LearningUnit = 5:1, date = c("09-18", "09-11", "09-11",
"09-04", "09-04"))
dates

LearningUnit date

1 5 09-18
2 4 09-11
3 3 09-11
4 2 09-04
5 1 09-04

merge (teachersLUl_5, dates, by.x = "LU", by.y = "LearningUnit")

26 learning unit 3

15.4 Merging with duplicates 15 JOIN MULTIPLE DATASETS

LU name date

#t 1 1 Aafke 09-04
2 2 Melinda 09-04
3 3 Michela 09-11
4 4 Coline 09-11
5 5 Juan 09-18

15.4 Merging with duplicates

{y |BONUS: Tip

If there are multiple matches between x and y, all combinations of the matches are
returned. This can be messy and it’s crucial to make sure that there are not duplicated
values in the two data frames before merging them.

Let’s see what happens when we merge data frames with duplicated rows.

let's see w

teachersLUl 5 <- data.frame(name = c("Aafke", "Melinda", "Michela", "Coline",
"Juan", "Melinda"), LU = c(1:5, 2))

teachersLUl_5

name LU
#H# 1 Aafke
2 Melinda
3 Michela
4 Coline
5 Juan
6 Melinda

dates <- data.frame(LU = 5:1, date = c("09-18", "09-11", "09-11", "09-04",
”09—04“))

N O WD -

dates

#it LU date

1 5 09-18
2 4 09-11
3 3 09-11
##H 4 2 09-04

#* 5 1 09-04
merge (teachersLUl1_5, dates)

#t LU name date
1 1 Aafke 09-04

27 learning unit 3

15.5 Merging with NA values 15 JOIN MULTIPLE DATASETS

2 2 Melinda 09-04
3 2 Melinda 09-04
4 3 Michela 09-11
5 4 Coline 09-11
6 5 Juan 09-18

the duplicate row carries out in the newly merged data frame

the recommended practice is to remove the duplicates first
merge (unique (teachersLUl_5), unique(dates))

#it LU name date

1 1 Aafke 09-04
2 2 Melinda 09-04
3 3 Michela 09-11
4 4 Coline 09-11
5 5 Juan 09-18

15.5 Merging with NA values

{y [BONUS: Tip

If there are NA values in the key column(s) used for merging, the returned data frame is
very messy and will contain extra rows. Set “incomparables = NA“ to avoid this problem

Let’s see what happens when we merge data frames with NA values in the key column used
to join the data sets.

the LU column contains some duplicates

teachersLUl 5 <- data.frame(name = c("Aafke", "Melinda", "Michela", "Coline",
"Juan"), LU = c(1, 2, NA, NA, 5))

teachersLUl_5

name LU
1 Aafke 1
2 Melinda 2
3 Michela NA
4 Coline NA
5 Juan 5

dates <- data.frame(LU = c(5, NA, 3, 2, NA), date = c("09-18", "09-11", "09-11",
"09-04", "09-04"))
dates

LU date

28 learning unit 3

15.6 Types of join 15 JOIN MULTIPLE DATASETS

1 5 09-18
2 NA 09-11
3 3 09-11
4 2 09-04
5 NA 09-04

merge (teachersLUl 5, dates)

LU name date
1 2 Melinda 09-04
2 b5 Juan 09-18
3 NA Michela 09-11
4 NA Michela 09-04
5 NA Coline 09-11
6 NA Coline 09-04

can you spot the problem?

the recommended practice 1s to use incomparables = NA
merge (teachersLUl_5, dates, incomparables = NA)

LU name date
1 2 Melinda 09-04
2 5 Juan 09-18

15.6 Types of join

When merging datasets by column name, we can choose among different options or joins
(see also the figure):

o natural join or all = FALSE: returns only the rows from x and y with matching cases

o full outer join or all = TRUE: returns all rows from both x and y. Not matching
values are represented by NA values

o left outer join or all.x = TRUE: returns all rows of x and all rows of y that are
matching. Rows in x with no match in y will have NA values in the new columns

« right outer join or all.y = TRUE: returns all rows of y and all the matching rows of
x. Rows in y with no match in x will have NA values in the new columns

teachersLUl 5 <- data.frame(name = c("Aafke", "Melinda", "Michela", "Coline",
"Juan"), LU = 1:5)
teachersLUl_5

name LU
1 Aafke 1
2 Melinda 2
3 Michela 3

29 learning unit 3

15.6 Types of join 15 JOIN MULTIPLE DATASETS

all = FALSE all = TRUE all.x = TRUE all.y = TRUE
natural join full outer join left outer join right outer join

Figure 1 A graphical visualization of the different types of joins. The graph was downloaded
from datascienceplus.com.

4 Coline 4
5 Juan 5

dates <- data.frame(LU = c(7, 5, 3, 2, 1), date = c("09-18", "09-11", "09-11",
"09-04", "09-04"))
dates

LU date
1 7 09-18
2 5 09-11
3 3 09-11
4 2 09-04
5 1 09-04

natural join
nat_join <- merge(teachersLUl 5, dates) # equivalent to merge(owl, ids, all = FALSE)
nat_join

LU name date
1 1 Aafke 09-04
2 2 Melinda 09-04
3 3 Michela 09-11
4 5 Juan 09-11

full outer join
full join <- merge(teachersLUl_5, dates, all = TRUE)
full_join

LU name date

1 1 Aafke 09-04
2 2 Melinda 09-04
3 3 Michela 09-11
4 4 Coline <NA>
5 b Juan 09-11

30 learning unit 3

https://datascienceplus.com/combining-data-in-r-the-skill-of-merging-joining-and-stacking/

15.6

Types of join

15 JOIN MULTIPLE DATASETS

6

7 <NA> 09-18

left outer join

left_join <- merge(teachersLUl 5, dates, all.x

left

##
##
#i#
#i#
#i#
5

W N -

join

LU name date
1 Aafke 09-04
2 Melinda 09-04
3 Michela 09-11
4 Coline <NA>
5 Juan 09-11

right outer join

right_join <- merge(teachersLUl 5, dates, all.y = TRUE)

right

##
##
#it
##
#i#
##

g W N =

_join

LU name date
1 Aafke 09-04
2 Melinda 09-04
3 Michela 09-11
5 Juan 09-11
7 <NA> 09-18

o

BONUS: Tip

If uncertain about the type of joint to use, check the dimensions of both data frames
before merging and after merging. Do the dimensions correspond to our expectations?

31

learning unit 3

17 INTERACTIVE EXERCISE

16 Recap

Q | List of the functions learned

o getwd()

o setwd()

. Is()

« rm(),

 save(), save.image()

« load(),

« read.table(), read.csv(), readRDS()
o write.table(), write.csv(), writeRDS()
e ncol(), nrow(), dim()

« names(), colnames(), row.names()
o order()

« which()

 summary(), table()

e head(), tail(), View()

o duplicated(), unique()

« any(), is.na(), complete.cases()

e cbind(), rbind(), merge()

17 Interactive exercise

Open your file view on Windows and locate where you saved the file Nijmegen_trees.csv.
Right click on the file, select properties and check its location or path Start RStudio and
check your working directory with getwd() Does the working directory match the location
of the file? If the answer is not, modify the working directory with setwd()

Read the file in

data <- read.csv("./RawData/Nijmegen_trees.csv")

note that we modified the data and added an extra column with clean species
nmames so that we can merge with phylogenetic tree later on

explore the data and the structure

head(data)

tail(data)

data[234:237,]

dim(data)

nrow(data)

ncol(data)

order your data by spectes_mam and postcode_nummer

32 learning unit 3

17 INTERACTIVE EXERCISE

data <- datalorder(data$species_name, data$postcode_nummer),]

explore the data further

summary (data)

unique (data[data$postcode_nummer == 6524, "species name"])

use drop = FALSE to be type consistent, e.g.
unique(data[data$postcode_nummer == 6524, '"species_name", drop = FALSE])
data[data$species_name == "Acer", c("species name", "wijk")]

we see a lot NAs at the end. why?

to avoid it use which

data[which(data$species_name == "Acer"), c("species_name", "wijk")]
subset(data, species_name == "Acer")[, c("species_name", "wijk")]
What informations can you retrieve from each of

these functions?

check what ts in your workspace
1s0)

R
Question: how do the trees in Nijmegen fit in the tree of life?

To answer we need additinal data. There are many phylogenies out there,
we downloaded infos from the Open tree of life

phylogeny <- read.table("./RawData/tree_phylogeny.txt")

explore the data with the functions summary(), head()
summary (phylogeny)
head (phylogeny)

how can we merge the databases? with the species names as key to match them.
colnames(data)

names (data)

colnames (phylogeny)

we can try to merge the datasets:

merge (data, phylogeny)

ERROR: the process will hang forever, because R does not know how to merge
the data stop the process with Esc or by pressing the stop button

let's find out why the issue occurred:
colnames(data)

colnames (phylogeny)

the columns are named differently!

we could use the argument by
res <- merge(data, phylogeny, by.x = "species name", by.y = "species")

33 learning unit 3

17 INTERACTIVE EXERCISE

OR # we could change the column names to match:
colnames(data) [colnames(data) == "species name"] <- "species"
colnames(data)

res <- merge(data, phylogeny)

we just implemented a matural join

did the merging do what we was ezxpecting
head(res)

dim(res)

dim(data)

why not?

any duplicates?

any(duplicated(res))

any(duplicated(data))
any(duplicated(phylogeny))

remove duplicates for good:

phylogeny <- unique(phylogeny)

any missing values in the keys?
any(is.na(data$species))
any(is.na(phylogeny$species))

how come some trees are mot classified?
likely the data were not typed correctly. If it's your data it's worth to
go back to your notebooks and check them
we have no way to change it as we did not collect the data, so we delete
the data where we miss the species name.
remove missing values:

data <- datal[complete.cases(data$species), 1]

H R K B B W

show different results with different all options
full outer join

res_all <- merge(data, phylogeny, all = TRUE)
head(res_all)

dim(res_all)

dim(data)

let's merge with the option all.z = T, left outer join
res_x <- merge(data, phylogeny, all.x = TRUE)

checking:

head(res_x)

dim(res_x)

dim(data)

34 learning unit 3

18 EXERCISES

right outer join

res_y <- merge(data, phylogeny, all.y = TRUE)
head(res_y)

dim(res_y)

dim(data)

show the picture with the differences between types of joins

To answer the question how do the trees in Nijmegen fit in the tree of life
we need the first option: the left outer join

res_x

write.table(res_x, "./DerivedData/Nijmegen_tree_phylogeny.txt")

make some summaries with table function:
table(res_x$family)

two-way table

table_genusXfamily <- table(res_x$genus, res_x$family)
table_familyXgenus <- table(res_x$family, res_x$genus)

save an Rdata object

save(table_genusXfamily, file = "./DerivedData/table_genusXfamily.Rdata")
save the whole workspace
save.image(file = "./DerivedData/example_lecture3.Rdata")

let's clean up our workspace

rm(list = 1s())

1s0)

now if we wanted to retriev the data we could simply:
load("./DerivedData/table_genusXfamily.Rdata")

1sQ)

load("./DerivedData/example lecture3.Rdata")
1s0O

18 Exercises

18.1 Introduction

Create an R file called exercises LU3.R in the LU3 folder. Try opening RStudio from the
program’s list and the R file. In both cases check the working directory and, if needed, set
it manually to the location where you keep the materials for the LU3 Which difference do

35 learning unit 3

18.2 The Lizard dataset 18 EXERCISES

you notice when opening RStudio from program’s list and the R file? Compare your results
with those of your neighbour.

18.2 The Lizard dataset

The lizards.txt dataset in the RawData folder includes real-world data about the perching
behavior of two species of lizards in South Bimini Island (Shoener, 1968).

The lizards’ data set contains the following variables:

 Species (the species of the lizard): a two-level factor with levels Sagrei and Distichus

» Height (perch height): a two-level factor with levels high (greater than 4.75 feet) and
low (lesser or equal to 4.75 feet)

o Diameter (perch diameter): a two-level factor with levels narrow (greater than 4 inches)
and wide (lesser or equal to 4 inches)

Steps:

1. Read the dataset in R and save it as an object in the workspace
Check the class of the object and the class of each column
Check the dimensions of the dataset
In Rstudio explore the data with the function View()
Visualize the top and bottom of the dataset. What information can you retrieve?
Make a summary of the dataset. What does the summary tell us in this case?
Change the column names from Species, Diameter, and Height to species, diameter
and height
8. Add a new column to the dataset (HxD) which combines the Height and Diameter
columns (e.g. low_narrow). HINT: use the function paste() or pasete0()
9. Subset the data and show only rows for the Sagrei species
10. How many narrow and wide perches do the two species of lizards use?
11. How many high versus low perches do the two species use?

N Tt W

18.3 The Owl dataset

The owl data (Zuur et al. (2009), Roulin and Bersier (2007)) quantify the number of vocal-
izations by owl chicks (NegPerChick) when parents are absent in different nests as a function
of food treatment (deprived or satiated), the sex of the parent, arrival time of the parent at
the nest, and brood size. More information about the data collection can be found in the
metadata subfolder.

The owl dataset has been split into two parts: owl partl.csv and the owl part2.csv (see
the RawData folder).

To solve this exercise:

1. read the two files, owl partl.csv, and owl part2.csv from the RawData subfolder

36 learning unit 3

18.4 The Owl and Parent IDs datasets 18 EXERCISES

2. how do the two datasets differ?

3. Combine them in a single dataset. Pay attention to the order of the column names
before!

4. Order the data by the column Nest and NegPerChick

5. Save the newly combined dataset as a .csv into the DerivedData folder

18.4 The Owl and Parent IDs datasets

Let’s work further with the owl data. We want to merge the owl dataset with an additional
dataset which includes the identifiers (id) of the parent for each nest, so that we can create
a new dataset that includes the ids of the parent in addition to the available data. The
owl dataset (owls.csv) and the ids dataset (Parentlds.csv) are ready for use in the RawData
folder.

To solve this exercise:

1. Read the two datasets in the console

Explore both datasets quickly

How can we merge them?

Before joining the datasets pay attention to potential problems with duplicates or NA
values and the identification of the key column for merging

Try the four types of merging and check possible differences

Explore the newly created dataset (pay attention to the dimensions)

What type of merging is more appropriate?

Save the dataset in the DerivedData subfolder as a .txt file

- N

X N oo

18.5 The Rikz dataset

The rikz dataset includes “marine benthic data from nine inter-tidal areas along the Dutch
coast. The data were collected by the Dutch institute RIKZ in the summer of 2002. In
each inter-tidal area (denoted by ‘beach’), five samples were taken, and the macro-fauna and
abiotic variables were measured.” See link

e Sample: sample number

« Richness: species richness

o Exposure: index composed of the surf zone, slope, grain size, and depth of anaerobic
layer

o NAP: height of sampling station compared to mean tidal level

o Beach: beach identifier or id

To solve this exercise:

1. read the rikz.csv file from the RawData folder
2. Explore the data
3. Modify the column Exposure as a two-levels factor: 10 and 11

37 learning unit 3

https://rdrr.io/github/romunov/AED/man/RIKZ.html

18.6 Optional 18 EXERCISES

Modify the column Richness by setting the maximum value to 10

How is the exposure distributed among Beach ids?

How is the Richness distributed considering the exposure?

How is the richness distributed among Beach ids?

Subset the dataset to include only rows where the Richness is below 5. Which Beach
ids do they correspond to?

9. How many samples have Richness values below 5 per Beach?

X NS Ot

18.6 Optional

If you finished all the above exercises and have some time left you could load a dataset you
need to use for your thesis, explore it and clean it from within R.

38 learning unit 3

Learning unit 4 - Controlling the flow
Without solutions

Juan Gallego-Zamorano

Contents

1 Learning Unit Goals

2 Functions we are going to use
3 Conditional statements

4 IF statement

5 LOOPS
5.1 Whileloops
5.2 Forloops
5.3 Nested loops. oL
5.4 Repeat loops

6 Exercises
6.1 Difficulty level = Basic 0.
6.2 Difficulty level = Medium
6.3 Difficulty level = Difficult

1 Learning Unit Goals

By the end of the class you will be able to:

1. Control the flow of your script using “conditional statements”
2. Iterate over a code several times using loops
3. Exit loops to catch potential errors inside them

10
10
14
22
25

4 IF STATEMENT

2 Functions we are going to use

o If, If/else and ifelse statements
o While loops, for loops, nested loops, break, next and try
o Integrating ifelse statements inside loops

3 Conditional statements

Conditional statements are used to specify the execution of your code. They are really useful
if you want to run only some parts of your code if a condition is met, or for running a code
several times. In this learning unit you will learn the use of “if statements” (conditional
statements) and “loops”.

4 IF statement

Everyday we do hundreds of IF statements in our life. Every decision we make has some
implications and therefore we use IF statements in our head to decide what to do. For
example:

-IF I eat, THEN I will gain energy, ELSE I will be tired...

-IF I pay attention now, THEN I will understand this lecture, ELSE I will fail the course
straight away!

Another really useful example is to think in a traffic light as below (We will talk about the
yellow light later...)

The Traffic Light: An Everyday IF Statement

\ \ IF light is red, THEN stop!

. IF light is , THEN what???

IF light is green, THEN go!

2 learning unit 5

4 IF STATEMENT

In R, the structure of an IF statement is:

if (condition) {
statement

This is read as: If the “condition” is TRUE, THEN it will do the “statement”. The condition
can be either a relational or logical statement, which returns a Boolean value, such that the
condition is either TRUE or FALSE. The condition must be of length equal to one. If the
condition is, for example, a vector the program will return a weird output with a warning
message “the condition has length > 1 and only the first element will be used”.

As a quick recap relational operators are: < less than; > greater than; <= less than or
equal to ; >= greater than or equal to; == equal to; and != not equal to. While
logical operators are: ! not; & and; && logical and; | or; || logical or.

For example:

if (1==1) {
print ("Is the same number")

}

[1] "Is the same number"

If the condition (expression) is FALSE, THEN it won’t do the statement (so nothing will be
outputted in the console)

if(1==2) {
print("Is the same number")

}

If we want the code to output something when the condition is FALSE, we have to include
the ELSE clause:

if (1==2) { # Because this is FALSE
print ("Is the same number")

} else { # THEN do the next statement
print ("Different numbers")

3

[1] "Different numbers"

As you can imagine, we can repeat this structure to check more complex conditions. For
example:

3 learning unit 5

4 IF STATEMENT

x <- 1 # We create a wvariable call "z" with the wvalue 1

if (x < 0) {#IF X is a number below O THEN print "Negative number”
print ("Negative number")

} else if (x > 0) {#ELSE check if it is above O and print "Positive number”
print("Positive number")

} else {# IF it is not below mor above, then it is 0!
print ("The number is zero")

b

[1] "Positive number"

x <- 0 # We create a wvariable call "z" with the wvalue 0

if (x < 0) {#IF X is a number below O THEN print "Negative number”
print("Negative number")

} else if (x > 0) {#ELSE check if it s above O and print "Positive number”
print ("Positive number")

} else {#IF it is mnot below nor above, then it is 0!
print ("The number is zero")

3

[1] "The number is zero"

Moreover, if statements can also be coded in one line with ifelse:

The structure of the t1felse 1s as follows
ifelse(condition, is TRUE, is FALSE)

ifelse(condition, yes, no) where test is a logical obejct that can be either TRUE or
FALSE. Where the test is TRUE, ifelse() replaces TRUE with whatever operation is in yes.
Similarly, where the test is FALSE, ifelse() replaces FALSE with whatever operation is in
no. The cool thing about ifelse() is that it can be applied to vectors, so the condition can be
a vector. This would not be possible with an if/else statement, which requires the condition
to have the length of one.

x <=1
ifelse(x < 0, "Negative number", "Positive number")

[1] "Positive number"

4 learning unit 5

4 IF STATEMENT

ifelse(x > 0, "Positive number", "Negative number")

[1] "Positive number"

Do you remember the traffic light?

Now that we know how to apply an “if/else” nested statement we can take a more complex
decision.

Let’s assume that the traffic light is yellow. We will go if we are at less than 20m from the
traffic light, otherwise we will stay and wait for the green light.

Yellow Light! - Multiple Criteria for the IF Statment

IF | stop, THEN | could check
facebook, send a text, check for
new blog posts on Excel Campus.

Do | have the distance?
Are there any cops?

IF | go, THEN | have a chance to
finally get to work on time.

5) learning unit 5

4 IF STATEMENT

Lets code it:

light <- "yellow" # Let's assign a color to our traffic light
distance <- 25 # And a distance to the traffic light

if (light == "red"){
print("Is RED! STOP!")
} else if(light == "green"){
print("Is GREEN! GO!!")
} else if (light == "yellow") {
print ("Whatch out! Is YELLOW!")
if (distance < 20){
print ("RUN YOU CAN MAKE IT!!")
} else{
print ("STOP YOU WILL NOT MAKE IT!!")

b
+

[1] "Whatch out! Is YELLOW!"
[1] "STOP YOU WILL NOT MAKE IT!!"

6 learning unit 5

4 IF STATEMENT

Biologists often use IF statements with conditions based on comparisons between data. By
means of IF statements they can check wheter their code works or not, exit your code if a
condition is meet, or assign new variables based on logical conditions.

For example with our data of the trees in Nijmegen, we can use the if statements to:

1. Compare the age between different trees
2. Assign an age for the different trees

Let’s read the data:

Change the relative path or use read.csv(file.choose()) to find the data
trees <- read.csv("./RawData/Nijmegen trees.csv")

names (trees)
[1] "postcode_nummer" "wijk" "BOOMSOORT" "PLANTJAAR"
[5] ||ID|| "X" nyn

Explanation of each column of the database:

o Postoce number: The postcode of the district where a tree is planted
o Wijk: The name of the district where each tree is planted

« Boomsoort: The species of each tree

o Plantjaar: The age of each tree

e ID: A unique identifier of each tree

o x: Longitude where each tree is planted

« y: Latitude where each tree is planted

Let’s get two random trees

treel <- trees[12670,] # A Random tree

treel

#i# postcode_nummer wijk BOOMSOORT PLANTJAAR ID X
12670 6532 Goffert Fagus sylvatica 1890 14568 185949.6
#it y

12670 425736.2

tree2 <- trees[19762,] # Another random tree

tree2

postcode_nummer wijk BOOMSOORT PLANTJAAR ID X
19762 6535 Hatert Quercus robur 1980 26987 184922.1
#it y

19762 423579.1

7 learning unit 5

4 IF STATEMENT

1. Compare the age between different trees: Which of the two trees is older?

Which tree is older?
if (treel$PLANTJAAR < tree2$PLANTJAAR){
print("Tree 1 is older than Tree 2")
} else {
print ("Tree 2 is older than Tree 1")

b

[1] "Tree 1 is older than Tree 2"

2. Assign an age for the different trees: If we assume that a tree from the 1900 or earlier
is “old”, then we can assign an age to the different trees:

We can create a dichotomous variable which can take only two wvalues:
0ld or Young.

The wvalue 0ld ©s assigned if the tree was planted before or in 1900,
the wvalue Young i1f the tree was planted after 1900

if (treel$PLANTJAAR <= 1900) {
treel$Age <- "014"
print (treel$Age)

} else {

treel$Age <- "Young"
print (treel$Age)

[1] "01lq"

See that Tree 1 s old

treel

postcode_nummer wijk BOOMSOORT PLANTJAAR ID X
12670 6532 Goffert Fagus sylvatica 1890 14568 185949.6
#i# y Age

12670 425736.2 01d

8 learning unit 5

4 IF STATEMENT

if (tree2$PLANTJAAR <= 1900) {
tree2$Age <- "014"
print (tree2$Age)

} else {

tree2$Age <- "Young"
print (tree2$Age)

[1] "Young"

See that Tree 2 is young

tree2

#it postcode_nummer wijk BOOMSOORT PLANTJAAR ID X
19762 6535 Hatert Quercus robur 1980 26987 184922.1
y Age

19762 423579.1 Young

However, what if we want to assign an age for each of the 61992 trees in Nijmegen 7?77
This is almost a impossible mission to do it one by one, should be possible thought, or we
could use the so called LOOPS for it.

9 learning unit 5

5 LOOPS

5 LOOPS

Loops are a way to iterate over a code several times. There are three main loops:

1. While loops
2. For loops

3. Repeat loops

while loop | For loop | repeat loop |
———————

5.1 While loops

While loops are somewhat similar to if statement, they execute the expression inside them
as long as the condition (expression to test) is TRUE. The difference with the if statements
is that while loops will continue to execute the code as long as the condition is TRUE. It is
crucial that that the condition part of a while loop becomes FALSE at some point during
the execution. Otherwise, the while loop will run for ever.

If the condition ts TRUE then it will execute the expression for ever
while(condition) {
expression

b

10 learning unit 5

5.1 While loops 5 LOOPS

Imagine that you drive a car and that you are accelerating. While you are accelerating, the
speed meter tells you that you increase your speed every 5km/h. In programming, this can
be translated into a while loop. However, be careful! If you never break or set a maximum
speed then the while loop will keep increasing the speed and will last forever. In the example
below we set that the while loop will run until the speed reaches the maximum of 50 km/h.

speed <- O

while(speed <= 50){ # 4t will continue until the speed is over 50
print(paste("Speed is", speed, "km/h"))
speed <- speed + b5

}

[1] "Speed is O km/h"
[1] "Speed is 5 km/h"
[1] "Speed is 10 km/h"
[1] "Speed is 15 km/h"
[1] "Speed is 20 km/h"
[1] "Speed is 25 km/h"
[1] "Speed is 30 km/h"
[1] "Speed is 35 km/h"
[1] "Speed is 40 km/h"
[1] "Speed is 45 km/h"
[1] "Speed is 50 km/h"

The computer prints your speed until 50km but now the speed is higher than
that so the While loop stoped. This is because the condition speed <= 50
becomes false for wvalues of speed of 51+

print (speed)

[1] 55

If we remove the last line inside the While loop, it will continue for ever! This is because the
speed is always less than 50! ALWAYS make sure the while loop finishes at some
point!! i.e. the condition should become FALSE at some point.

speed <- O

while(speed <= 50){
print(paste0("Speed is set to ", speed))

11 learning unit 5

5.1 While loops 5 LOOPS

Let’s combine this while loop with the “if statements” that we learnt before.

Imagine that you are driving and you enter in a town road. The speed limit is 30km/h but
you are going at 60km/h. You will slowly decelerate and the computer of the car will send
you a message to reduce your speed until you are safe from the cops.

speed <- 60

while (speed > 30) {
print(paste("Your speed is", speed,"km/h"))

if (speed > 40) {

print("Slow down!!!")
speed <- speed - b5

} else if(speed <= 40){

print("Slow down a bit more...")
speed <- speed - 2

[1] "Your speed is 60 km/h"
[1] "Slow down!!!'"

[1] "Your speed is 55 km/h"
[1] "Slow down!!!"

[1] "Your speed is 50 km/h"
[1] "Slow down!!!"

[1] "Your speed is 45 km/h"
[1] "Slow down!!!"

[1] "Your speed is 40 km/h"
[1] "Slow down a bit more..."
[1] "Your speed is 38 km/h"
[1] "Slow down a bit more..."
[1] "Your speed is 36 km/h"
[1] "Slow down a bit more..."
[1] "Your speed is 34 km/h"
[1] "Slow down a bit more..."
[1] "Your speed is 32 km/h"
[1] "Slow down a bit more..."

12 learning unit 5

5.1 While loops 5 LOOPS

Now we should be safe, lets check our speed
print(paste("Your speed is", speed,'km/h"))

[1] "Your speed is 30 km/h"

13 learning unit 5

5.2 For loops 5 LOOPS

While loops are useful if we do not know the number of iterations, i.e. when the number of
iterations are not predictable beforehand. For example: count the number of clicks on a web
page banner within the next two days, or the number of birds migrating through a specific
point...In these cases, we do not know the exact number of iterations that we need to count
those numbers.

However, we do normally know the number of iterations and therefore the most common
type of loop is the For loop.

5.2 For loops

For loops are the most used loop. They run an expression (code) a pre-defined number of
times. See its structure:

#The structure 1s read as: for each wvariable, in a sequence...
#execute the expression
for(variable in sequence) {

expression

}

A variable can be for example an index, or a position, or an element in a sequence. The
variable will take each value of the sequence and will do an iteration.

Imagine that we want to print every letter in the English alphabet, ABC. Because we know
that the English alphabet ABC has 26 letters, we know the number of times that we want
to iterate in our loop, therefore 26 is our sequence.

See how is coded and read it: For each variable (one__letter) in the sequence (ABC),
do the expression (print(one_ letter)).

In this case, “one_ letter” will adopt each value in the ABC and do the expression the number
of times pre-defined in the sequence (26).

ABC <- letters # letters the sequence of letters in the abc in lowercase

for(one_letter in ABC) {
print (one_letter)

}

[1] uau
[1] Ilbll
[1] "c"
[1] "q"
[1] ueu
[1] ufu
[1] Ilgll
[1] Ilhll

14 learning unit 5

5.2 For loops 5 LOOPS

[1] "i"
[1] "j"
[1] "k"
[1] "1
[1] "m"
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

N< M 5 < 2 w00 o 8

Below there are two more examples of how the for loops works and they are read.

For each number in the sequence of ten, print the number...

In this case, “number” will take each value in the sequence of 10 (it will go from 1 to 10),
and print everytime a “new__number” that in this case is the same.

ten <- 1:10 # or seq(from = 1, to = 10, by = 1)

for(number in ten) {
new_number <- number
print (new_number)

b

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

O© 0 NO O W N -

[
o

For each number in the sequence of ten, take number and sum 0.1 and print the decimal
number...

15 learning unit 5

5.2 For loops 5 LOOPS

for(number in ten) {
decimal <- number + 0.1
print (decimal)

}

[1] 1.1
[1] 2.1
[1] 3.1
[1] 4.1
[1] 5.1
[1] 6.1
[1] 7.1
[1] 8.1
[1] 9.1
[1] 10.1

As before with the while loop, we can integrate “if statements” inside the for loops.
In the example below, each number will be summed 0.1 and printed. In addition, if the
number is equals to 6, then it will print “The number is 6” before summing 0.1.

for(number in ten) {

if (number == 6) {
print ("The number is 6")

}

decimal <- number+0.1
print(decimal)

[1]
[1]
[1]
[1]
[1] 5.

[1] "The number is 6"
[1] 6.1

[1] 7.1

[1] 8.1

[1] 9.1

[1] 10.1

W N -
N e e

16 learning unit 5

5.2 For loops 5 LOOPS

Two main control statements can be used to control the behaivour of the for loop. Break
and Next.
In the example below, if the number is 6 then the loop will break, it will stop!

for (number in ten) {

#it
#i#
##
##
##
##

if (number == 6) {
print(”The number is 6 so I won't continue printing“)
break

3

decimal <- number+0.1
print (decimal)

[1]
[1]
[1]
[1]
[1]
[1]

.1
.1
1
1

W N -

5.1
"The number is 6 so I won't continue printing"

Next will jump to next iteration of the loop.

for (number in ten) {

#i#
##
#it
#i#t
##
#i#
##
#it
#i#
##

if (number == 6) {
print ("The number is 6 so I won't add a decimal but I continue in 7")

next

3

decimal <- number+0.1
print (decimal)

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

.1
.1
.1
.1

DS W N -

5.1
"The number is 6 so I won't add a decimal but I continue in 7"
7.1
8.1
9.1
10.1

17 learning unit 5

5.2 For loops 5 LOOPS

Sometimes you might want to run your loop enterily and test if there are any errors, in other
words, you want to try the loop. That is possible with the TRY argument. If there is any
error, try skips over the error-causing input and continues on with the rest of the lopp.

In the example below, the loop will stop and throw us an error when trying to do the log of
“oops” (because it’s impossible!):

inputs = list(1, 2, 4, 'oops', 0, 10)

for (number in inputs) {
print (paste("log of", number, "=", log(number)))
}

If we use the try function, the output of the loop will show that there is an error when trying
to do the log of “oops” but it will skip it and continue with the next value of the input.

inputs = list(1, 2, 4, 'oops', 0, 10)

for(number in inputs) {
try(print (paste("log of", number, "=", log(number))))
}

[1] "log of 1 = O"

[1] "log of 2 = 0.693147180559945"

[1] "log of 4 = 1.38629436111989"

Error in log(number) : non-numeric argument to mathematical function
[1] "log of 0 = -Inf"

[1] "log of 10 = 2.30258509299405"

18 learning unit 5

5.2 For loops 5 LOOPS

A common way to write loops is to use indexes. Previously we told you that “one_ letter”
or “number” was our index. However, it is more common to use a letter e.g. i,j.k.
See the examples below:

1 15 the looping index and it can be used to access info of the sequence
for(i in 1:length(ten)) {

print(ten[i])
}

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

©O© 00 NO O d W N -

[y
o

72 1s the looping index and it can be used to access info of the sequence
for(i in 1:length(ten)) {

print(pasteO(ten[i], " is the ", i, "th number of the sequence"))
b

[1] "1 is the 1th number of the sequence"
[1] "2 is the 2th number of the sequence"
[1] "3 is the 3th number of the sequence"
[1] "4 is the 4th number of the sequence"
[1] "5 is the 5th number of the sequence"
[1] "6 is the 6th number of the sequence"
[1] "7 is the 7th number of the sequence"
[1] "8 is the 8th number of the sequence"
[1] "9 is the 9th number of the sequence"
[1] "10 is the 10th number of the sequence"

19 learning unit 5

5.2 For loops 5 LOOPS

To improve the result of the previous loop, we can use some “if else” statements.

1 1s the looping index and it can be used to access info of the sequence
for(i in 1:length(ten)) {

if(i == 1){

print(pasteO(ten[i], " is the ", i, "st number of the sequence"))
} else if(i == 2){

print(pasteO(ten[i], " is the ", i, "nd number of the sequence"))
} else if(i == 3){

print (pasteO(ten[i], " is the ", i, "rd number of the sequence"))
} elseq{

print(pasteO(ten[i], " is the ", i, "th number of the sequence"))
}

[1] "1 is the 1st number of the sequence"
[1] "2 is the 2nd number of the sequence"
[1] "3 is the 3rd number of the sequence"
[1] "4 is the 4th number of the sequence"
[1] "5 is the 5th number of the sequence"
[1] "6 is the 6th number of the sequence"
[1] "7 is the 7th number of the sequence"
[1] "8 is the 8th number of the sequence"
[1] "9 is the 9th number of the sequence"
[1] "10 is the 10th number of the sequence"

Tip: To test and ease write a loop is useful to first set the index to 1 (i.e. iin 1 OR i <-
1) and run the snipped of code for that specific value. When it works, you set the index to
2 (i.e. iin 2 OR i <- 2) and run it again, and so on for a couple of times. Then, when the
code looks like it’s working fine, you create the final loop (i.e. i in 1:seq). In this way you
can better understand which line of your code is working and which one is causing issues.
When programming always try to make the problem smaller.

20 learning unit 5

5.2 For loops 5 LOOPS

Do you remember our problem with the trees? We wanted to assign an age for each tree.
First we need to ask: How many trees do we have?

str(trees)

'data.frame': 61992 obs. of 7 variables:

$ postcode_nummer: int 6524 6524 6524 6524 6524 6524 6524 6524 6524 6524 ...

$ wijk : Factor w/ 22 levels "'t Acker","Altrade",..: 77 7 7777777
$ BOOMSOORT : Factor w/ 524 levels "Abies","Abies nordmanniana",..: 66 66 66 6¢
$ PLANTJAAR : int 1930 1930 1930 1950 1960 1950 1950 1930 1930 1930 ...

$ ID : num 256 257 258 259 260 261 262 263 264 265 ...

$ x : num 188114 188064 188018 188032 188204 ...

$y : num 427421 427416 427411 427311 427419 ...

length(trees) # Is this correct?? - Why??

[1] 7

This 1is the correct number that we want, our sequence
length(trees$ID)

[1] 61992

We can assign a variable for the sequence, number of trees
n_trees <- length(trees$ID)

Now that we know our sequence, we can create the for loop:

for(i in 1:n_trees) { #for the index ¢ in sequence of 1 to the number of trees

if (trees$PLANTJAAR[i] <= 1900) { #if the tree ith was planted before 1900
trees$Age[i] <- "01d" #then assign the Age of Old

} else { #else assign the Age of Young
trees$Age[i] <- "Young"

}

Moreover, we check how many old and young trees we have using the table function:

21 learning unit 5

5.3 Nested loops 5 LOOPS

table(trees$Age)

##
01d Young
561 61431

5.3 Nested loops

Imagine that now we want to know for each district, the number of trees of the different
ages. The previous problem had only one dimension (age), but now we have two dimensions
(district, age). To solve this, we need to iterate through each district, and through each tree
to know its age. Therefore, we need to create two individual sequences and two individual
indexes. This is know as nested for loop.

Objective: create a database per district and with the number of old and young trees per
district.

Note: %in} is a binary operator, which returns a logical vector indicating if there is a match
or not for its left operand. It is useful to subset datasets based on a condition that we know.

22 learning unit 5

5.3 Nested loops 5 LOOPS

the number of districts
n_districts <- length(unique(trees$wijk))

Empty data frame with number of districts

trees_district <- data.frame(District = rep(NA, n_districts),
01d = rep(NA, n_districts),
Young = rep(NA, n_districts))

1 will go from 1 to the final number of districts
so for © in the sequence of 1 to the total number of districts...
for(i in 1:n _districts){

we get the 1 district (one district)
one_district <- as.character(unique(trees$wijk) [i])

we used the Jinj to subset the dataset and
select all the trees in one_district
trees_one_district <- trees[trees$wijk ’in), one_district,]

7 will go from 1 to the total number of trees in a district,

they have a unique identifier so we can get the total number

of trees with lenght(length(trees_one_district$ID))

So the for loop will be: for 7 in the sequence of 1 to number of trees in a distri
for(j in 1:length(trees_one_district$ID)){

Check if the tree tth was planted before 1900
if (trees_one_district$PLANTJAAR[j] <= 1900) {

then assign the Age of 0Old
trees_one_district$Age[j] <- "014d"

} else { # else assign the Age of Young
trees_one_district$Age[j] <- "Young"
}
}

Import the mame of the district to the empty database
trees_district$District[i] <- as.character(unique(trees_one_district$wijk))

Check if there is any Young tree and fill the number of young trees
or put 0

This is read as: Is there "Young" /inJ all the list of ages?
if ("Young" %inJ, trees_one_district$Age)q{

23 learning unit 5

5.3 Nested loops 5 LOOPS

trees_district$Young[i] <- length(which(trees_one_district$Age == "Young"))
} else {
trees_district$Young[i] <- 0
}
Check if there ts any 0Old tree and fill the number of young trees
or put O
if("01d" %in) trees_one_district$Age){
trees_district$01d[i] <- length(which(trees_one district$Age == "01d"))
} else {
trees_district$01d[i] <- 0
}

Lets check the result:

trees_district

#it District 01ld Young
1 Galgenveld O 1610
2 Altrade 26 1089
3 Brakkenstein 157 3315
4 Hengstdal 64 2811
5 Hunnerberg 13 1468
6 Goffert 67 4120
i Grootstal 19 2863
8 Hatert 2 3448
9 Stadscentrum 26 2098
10 Bottendaal 1 958
11 Hazenkamp 7 2390
12 Meijhorst 7 6064
13 Zwanenveld 8 4609
14 Weezenhof 0 1750
15 De Kamp 2 3163
16 't Acker 5 4760
17 Biezen 3 2935
18 Heseveld 44 1802
19 Wolfskuil 5 2074
20 Lent 80 3550
21 Oosterhout 0 2958
22 Neerbosch-Oost 25 1596

24 learning unit 5

5.4 Repeat loops 5 LOOPS

5.4 Repeat loops

A repeat loop is used to iterate over a block of code multiple number of times without any
condition to exit. However, they are beyond the scope of this lecture so in case you want to
know more about them here is a link:

https://www.datamentor.io/r-programming /repeat-loop /

25 learning unit 5

https://www.datamentor.io/r-programming/repeat-loop/

6 EXERCISES

6 Exercises

Recently Galdn-Acedo et al. (2019) published a database of ecological traits of the world’s
primates. This database has broad applicability in primatological studies, and can poten-
tially be used to address many research questions at all spatial scales, from local to global.
However, this database is provided in different csv files (i.e. one for body mass sizes, one
for habitats, and one for species-specific home ranges). In these exercises you will cre-
ate a new database out of Galan-Acedo’s one with new useful parameters and you will be
able to answer some ecological questions about primates. You can find the full dataset in:

10.5281/zenodo.1342458

Home range size

o 2

pra——— P .
9

§ 2

»®

S .
Diel activi .
iel activity “N A - A

Trophic guild

Body mass

Habitat type

Conservation e e ° ° o
status

Population trend / —_— \
Geographic realm i’ W

Fig. 1: Summary of the ecological traits of the world’s primates included in the database.
From left to right pictures represent: (1) home range size gradient from small to large; (2) lo-
comotion types are terrestrial, both locomotion types, and arboreal; (3) diel activity includes
diurnal, nocturnal and cathemeral; (4) trophic guild includes folivore, folivore-frugivore, fru-
givore, insectivore, omnivore, and gummivore (the latter not depicted); (5) body mass gra-
dient from small to large; (6) habitat type includes seven categories (see text) but only two
are depicted as examples (forest and savannah); (7) [IUCN conservation status includes seven
categories, with five depicted here (CR critically endangered, EN endangered, VU vulnera-
ble, NT near threatened and LC least concern); (8) population trend is represented by three
graphs indicating increasing, stable and decreasing populations; and (9) geographic realm is
represented by a global map.

Ecological traits of the world’s primates

26 learning unit 5

6.1 Difficulty level = Basic 6 EXERCISES

6.1

Difficulty level = Basic

First you need to read all the different datasets: - Primates BodyMass.csv: With informa-
tion per species about body size - Primates Habitat.csv: With information about the type
of habitat used per species - Primates HomeRange.csv: With information about the size of
home range per species

Remove the duplicates using the duplicated function (see LU3) and:

1.

6.2

Create a conditional statement that outputs which primate is bigger, smaller or the
same size between: Alouatta belzebul or Trachypithecus barbes.

Considering that species occuring in one single habitat are specialist of that habitat.
Create a variable using ifelse(), that sais if a species is a “Habitat specialist” or a
“Habitat generalist”. How many specialist and generalist species are in the dataset?

Difficulty level = Medium

I wanted to create a For loop to assign for each primate species if they have a small,
medium or big home range.

I decided to do that based on the statistics of the value of their home range. For
that, I checked the histogram of the logl0 value of the home range, and the summary
statistics, and I found that the 15* quantile is 1 which corresponds to 10ha (10'ha) and
the 3"quantile is around 2 which corresponds to 100ha (102).

These values seems perfect for my purpose, however, I was not able to create the For
loop because is giving an error. Can you help me??

For guidence, someone told me that there should be around 89 small-sized range
species, 172 medium-sized range, and 103 big-sized range species.

27 learning unit 5

6.2 Difficulty level = Medium 6 EXERCISES

hist(logl0(primatesHom$HomeRange ha))

Histogram of log10(primatesHom$HomeRange ha)

o _
o
o _|
> ©
[
)
>
o _|
CARR S
T
o _|
Y
O_

log10(primatesHom$HomeRange_ha)

summary (logl0 (primatesHom$HomeRange ha))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-0.5229 1.0212 1.4983 1.5408 2.0969 4.0909 141

28 learning unit 5

6.2 Difficulty level = Medium 6 EXERCISES

This is my trial of For loop that didn’t work out...

I created a variable with the logl0 wvalues of the home Tange
primatesHom$logHomerange <- loglO(primatesHom$HomeRange ha)

I created a variable with NA that will contain <f the range is small, medium or big
primatesHom$HomerangeSize <- NA

And now I start the for loop with the indexr =) but it doesn't work!
for(i in length(primatesHom$Species)){

sp_i <- primatesHom[i]
if (sp_i$logHomerange < 1){
primatesHom[i] $HomerangeSize <- "small"
} else if(sp_i$logHomerange > 1){
primatesHom[i] $HomerangeSize <- "medium"
} else {

primatesHom[i] $HomerangeSize <- "large"

The solution is:

To be given

29 learning unit 5

6.3 Difficulty level = Difficult 6 EXERCISES

6.3 Difficulty level = Difficult

4. Create a similar For loop as in 3. but with body mass sizes. Some experts consider
mammals below 1kg small-sized, between lkg and 10kg medium-sized, between 10kg
and 20kg large-sized, and above 20kg very-large-sized.

We have created different variables in the different datasets, however to answer some eco-
logical questions, we need to merge them and do some more processing...

5. Merge all the datasets and answer the below questions:

o What is the percentage of species per body size that are generalists?
« Can we say that primates are a generalist taxonomic group? (interpret your results)
e Does the range size of the species increase with increasing the body size?

30 learning unit 5

LU 5: The ‘apply’ family, aggregate and
debugging
With exercises and solution

Maarten Broekman € Melinda de Jonge

m.broekman@science.ru.nl, m.dejonge@fnwi.ru.nl

Contents
1 Learning goals 1
2 Functions we are going to use 2
3 In this Learning Unit 2
4 The basics 2
4.1 Forloopsand apply 2
4.2 Lapply and sapply 4
4.3 Tapply and aggregateo 6
4.4 Debugging 7
4.4.1 Where to look for help L. 8
4.4.2 Most common errors 9
443 Anexample 10
5 Exercises 12

1 Learning goals
By the end of the class you will be able to:

1. use functions in the apply() family to avoid the use of for loops
2. use the aggregate function to calculate summary statistics of subsets of a data set
3. solve the most common R errors and find solutions to other less common errors

mailto:m.broekman@science.ru.nl
mailto:m.dejonge@fnwi.ru.nl

4 THE BASICS

2 Functions we are going to use

« for loops
« subset()
e apply()
« lapply()
« sapply()
« tapply()
 aggregate()

3 In this Learning Unit

o The “apply” family consists of several functions that can be used to apply a function
to e.g. all rows or columns of a matrix/dataframe or all elements of a list. In this
learning unit, we discuss the following members of the apply family: apply(), lapply(),
sapply() and tapply(). These functions often return results that can also be obtained
with loops (discussed in LU4), but are much faster.

« The aggregate() function can be used to calculate summary statistics of subsets of a
data.

e R will return error messages when a code does not function, these messages can help
you locate the problem in the code

« R has a very active user base, and many problems have solutions on online forums
such as StackOverflow.

4 The basics

4.1 For loops and apply

To show how loops and functions of the “apply” family can produce the same results, we
use randomly generated fish data (fish.weight.csv). This dataset contains the body weights
of three fish species. For each fish species we want to know the mean and maximum body
weight.

First set the working directory
#setwd ("")

Load the data frame fish.weight
fish.weight <- read.csv("./RawData/fish.weight.csv",sep=";")

Look at the first six rows of the data frame
head(fish.weight)

2 learning unit 5

4.1 For loops and apply 4 THE BASICS

#it cod mackerel herring
1 0.2616791 0.2695651 0.3131698
2 0.2536846 0.2929308 0.3349552
3 0.2932540 0.3020822 0.3539116
4 0.3188049 0.3022859 0.3339471
5 0.2628168 0.2267598 0.2744634
6 0.2950176 0.3473954 0.3007222

Create empty vectors meanFishWeights and maxFishWeights
meanFishWeights <- c()
maxFishWeights <- c()

Use a for loop to calculate the mean and maximum weight of each fish
species
Store the results in the vector meanFishWeights and maxFishWeights
for(i in 1:ncol(fish.weight)){

meanFishWeights[i] <- mean(fish.weight[,i])

maxFishWeights[i] <- max(fish.weight[,i])
3

meanFishWeights

[1] 0.2928995 0.2849864 0.3330912

maxFishWeights

[1] 0.3687932 0.3473954 0.3952527

Use summary() to check results
summary (fish.weight)

#i# cod mackerel herring

Min. :0.25637 Min. :0.2268 Min. :0.2745
1st Qu.:0.2645 1st Qu.:0.2488 1st Qu.:0.3100
Median :0.2941 Median :0.2975 Median :0.3345
Mean :0.2929 Mean :0.2850 Mean :0.3331
3rd Qu.:0.3037 3rd Qu.:0.3041 3rd Qu.:0.3511
Max. :0.3688 Max. :0.3474 Max. :0.3953

apply() has the following form:
apply(X, MARGIN, FUN)

3 learning unit 5

4.2 Lapply and sapply 4 THE BASICS

where X is the data, a matrix or a dataframe. MARGIN indicates whether the function is
applied over rows (MARGIN=1), columns (MARGIN=2), or both (MARGIN=c¢(1,2)). FUN
is the function that is applied, this can either be functions already available in R (e.g. mean,
sum, max, etc.) our your own created function (discussed in LU7). The output of Apply is
a vector.

Use apply() to generate the same results
meanFishWeights <- apply(fish.weight,2,mean)
maxFishWeights <- apply(fish.weight,2,max)

meanFishWeights

#i#t cod mackerel herring
0.2928995 0.2849864 0.3330912

maxFishWeights

#i# cod mackerel herring
0.3687932 0.3473954 0.3952527

4.2 Lapply and sapply

Lapply works similar to apply() but performs a function to every element of a list (instead
of every row or column from a matrix or dataframe) and also returns a list (instead of a
vector). Lapply() has the following form:

lapply (X, FUN)

In which X is a list and FUN in a function, similar as in apply(). This function can be “[“, a
selection operator. The value after the first comma specifies which row is selected, the value
after the second comma specifies which column is selected.

sapply() works similar as lapply, but simplifies the output if possible (e.g. returns a vector
instead of a list).

To illustrate how lapply and sapply work we will load fishData.csv, which contains both the
body weights and lengths of three different fish species, make subsets for each fish species
and store these subsets in a list

Read the file fishData.csv
fish.data <- read.csv("./RawData/fishData.csv")

Look at the first six rows of fish.data
head(fish.data)

4 learning unit 5

4.2 Lapply and sapply 4 THE BASICS

species.list species.mass species.length

1 cod 0.3598479 0.3171510
2 cod 0.3505284 0.3382661
3 cod 0.2288044 0.3525479
4 cod 0.3126473 0.3707348
5 cod 0.3379635 0.3739625
6 cod 0.3077175 0.3466604

Make a list with subsets of the data for each fish species
fish.data.list <- 1list()

fish.data.list[[1]] <- subset(fish.data,species.list=="cod")
fish.data.list[[2]] <- subset(fish.data,species.list=="mackerel")
fish.data.list[[3]] <- subset(fish.data,species.list=="herring")

We can now use apply and sapply to extract from the dataset of each fish species only the
colum with the fish length and calculate the mean fish length

Use lapply to extract from each subset the last column

Because we select all rows, the entry after the first comma after "["
is empty

Save the results as fish.length

fish.length <- lapply(fish.data.list,"[",,3)

fish.length

[[1]]
[1] 0.3171510 0.3382661

o

.3525479 0.3707348 0.3739625 0.3466604 0.2897138

[8] 0.3575440 0.3666980 0.3534814

#it

[[2]]

[1] 0.2856037 0.3479374 0.3214358 0.3335567 0.2922849 0.3164287 0.3385158

[8] 0.2951104 0.3746411 0.4041166

##

[[3]]

[1] 0.3190827 0.3460843 0.3068681 0.3566739 0.3315917 0.3494571 0.3420924

[8] 0.3304976 0.3046518

o

.3638973

Use lapply to calculate the mean fish length for each fish species,
using the data in fish.length

The output is a list

lapply(fish.length,mean)

[[1]]
[1] 0.346676

) learning unit 5

4.3 'Tapply and aggregate 4 THE BASICS

##
[[2]]

[1] 0.3309631
##

[[3]]

[1] 0.3350897

Use sapply to calculate the mean fish length for each fish species,
using the data in fish.length

The output is a vector

sapply(fish.length,mean)

[1] 0.3466760 0.3309631 0.3350897

4.3 Tapply and aggregate

Tapply() applies a function to a vector (for example a column of a dataframe) for each unique
value given by INDEX. It has the following form:

tapply(X, INDEX, FUN)
The output of tapply() is an array.

We can use tapply to calculate for each fish species the average body weight, using the
fish.data dataset

Use tapply to calculate the average body weight for each fish species
tapply(fish.data$species.mass,fish.data$species.list,mean)

#it cod herring mackerel
0.3250896 0.3023467 0.3049527

aggregate() works comparable tapply(), it applies a function to each subset of a dataframe.
It has the following form:
aggregate(x, by, FUN)

In which x is an R object, for example a dataframe, by is a list of variables by which the
elements in x are grouped (it should have the same length as x) and FUN indicates the
function that should be applied. The output of aggregate() is a dataframe.

We can also use aggregate to calculate the average body weight for each fish species. In
addition, with aggregate we can calculate the average body weight and length at the same
time, using again the data fish.data.

6 learning unit 5

4.4 Debugging 4 THE BASICS

Use aggregate to calculate the average species mass for each fish species
We have to convert the column fish.data$species.list to a list, as

aggregate requires a list for the by argument.
aggregate(fish.data$species.mass,list(fish.data$species.list) ,mean)

#it Group.1 X
1 cod 0.3250896
2 herring 0.3023467
3 mackerel 0.3049527

Use aggregate to calculate the average species mass and average species
length for each fish species at the same time

Now we do not specify a column, but use the whole dataframe for x.
aggregate(fish.data,list(fish.data$species.list) ,mean)

Group.1 species.list species.mass species.length
1 cod NA 0.3250896 0.3466760
2 Therring NA 0.3023467 0.3350897
3 mackerel NA 0.3049527 0.3309631

4.4 Debugging

Sometimes when you run a piece of code, either written by yourself or written by others,
it does not run as expected. Often, R will trow some error message at you. Here’s a silly
example where we try to make a character object which holds the word ‘dog’:

a <- dog

Error in eval(expr, envir, enclos): object 'dog' not found

In this case, the error message gives you a pretty good idea of what’s going wrong, when we
forget to add the quotation marks when we want to make a character object, R thinks we
want to assign the value stored in the variable dog.

Sometimes, the error message thrown by R is not so obvious. Let’s consider another silly
example where we have an empty matrix of 3 rows and 2 columns and try to fill this with
number from 1 to 6 using a for loop. Of course, this can be done much more efficiently, but
for the sake of this example, we are going to do it using a for loop.

someMatrix = matrix(,nrow=3,ncol=2)
for (i in 1:6){
someMatrix[i,i] <- i

b

7 learning unit 5

4.4 Debugging 4 THE BASICS

Error in ~[<-"(T*tmp*~, i, i, value = i): subscript out of bounds

As you can see, the error message we get here is less obvious than the previous one. In cases
like this, and while debugging scripts in general, it can be a good idea to use the print()
function to keep track of what is going on.

for (i in 1:6){
print (i)
someMatrix[i,i] <- i

3

[1] 1
[1] 2
[1] 3

Error in ~[<-"(C*tmp*~, i, i, value = i): subscript out of bounds

This shows that error occurs when i reaches 3. So the error occurs when we try to assing
a value to someMatrix in row 3 and column 3, however, the matrix only has 2 columns,
obviously we cannot assign a value to a column that does not exist.

An additional tool that R offers to help debug code is the traceback() function. However,
this is mainly usefull when the error is hidden in functional calls.

4.4.1 Where to look for help

One of the benefits of working with R is that it has a pretty active user base. These users
come together on various internet forums where they ask each other for help to solve a certain
problem and share their knowledge on all kinds of R related things. The most well known
example of such a forum is ‘StackOverflow’.

8 learning unit 5

4.4 Debugging 4 THE BASICS

QN -
=, stackoverflow 0 9 @ S lgn I
flome Questions tagged [r] Ask Question FEATURED ON META
PUBLIC) Anncuncing the arrival of Valued
© Stack Overflow | R s a free, open-source programming language and software environment for statistical computing, bicinformatics Associate #679: Cesar Manara
wvisualization. and general computing. Please provide minimal and reproducible example(s) along with the desired output. Use) Planned maintenance scheduled April
Tags “dput()’ for data and specify all non-base packages with “library()" calls. Do not embed pictures for data or code, use indented 23, 2019 at 00:00UTC (8:00pm
code blocks instead. For statistics related questions, use https://stats stackexchange.com. USs/Eastem)
Users
Leamn more... Top users Synonyms (2) rjobs 2 Data science time! April 2019 and
Jobs salary with experience
. & The Ask Question Wizard Is Livel
285,882 questions info [E Featured | Frequent | Votes | Active | unanswered
Teams S]
QA for work 1 ——) -
0 How fo replace a percentage of data in matrix with a new value

roles 2
voles I need to replace 3% of the values in my matrix with the number 0.2 (guess in my code) IF they are below 0.2, "‘5&’-

leave them alene if they are above 0.2 Right now my code is changing all values less ..

5 ked 1 min ago Houston Inc.

Laura Helsinki, Finland
3 views .

We have great benefits!

0 Efficient way to recode multiple date values in R Great educational opportunities for
e developing your expertise
voles I have a quite large monthly database where the dates are recorded in a poorly way. For instance, for January
0 2000, the value is "200001". So | have values ranging from "200001" to "200012". To make Free snacks and drinks atthe office
. r o dplyr ked 1 min ago Emplayer offered homecare for sick
André Cordeiro Valério ehildren
2 views 12 o4 Extensive health care with health
insurance
+ & more benefits
0 Looping over vector updates just first item
voles | was trying to loop over a numeric vector, for instance: s = ¢(1, 3, 7, 10, 12, 13) and add leading 0 to an item if I D
0 it is a numeric < 10. Else do nothing. Desirable output: "00", "04", "07", "
S r asked 3 mins ago

Keep in mind that StackOverflow is a forum for all kinds of programming languages, so
alway speficy that you are looking for solutions in R. If you cannot directly find what you
are looking for on StackOverflow, you can always try to do a simple search in DuckDuckGo
(or any other search engine).

4.4.2 Most common errors

According to Naom Ross, who analyzed posts on StackOverflow, these are the most common
R errors.

1. Subscript out of bound: We saw an example of this in the previous section. These

errors generally mean that you are trying to assign a value to a place outside of the
outer bounds of the matrix or vector.

2. Could not find a function:

gl <- sumary(fish.data)

Error in sumary(fish.data): could not find function "sumary"

This often happens when you have a typo in your function name, or when you want to use
a function from a package that is not yet loaded into R.

3. Error in if:

9 learning unit 5

https://github.com/noamross/zero-dependency-problems/blob/master/misc/stack-overflow-common-r-errors.md

4.4 Debugging 4 THE BASICS

a <- c(1,2,NA,4)
for (i in 1:length(a)){
if (ali]l > 2){
print(alil])
}
}

Error in if (al[i] > 2) {: missing value where TRUE/FALSE needed

This happens when you try to pass a non-logical or a missing value to the logical operator
inside an if statement.

4. Cannot open:

a <- read.csv('a.txt')

Warning in file(file, "rt"): cannot open file 'a.txt': No such file or
directory

Error in file(file, "rt"): cannot open the connection

This error often pops up when you try to load in some data from a file. It means that the
file you try to open does not exists (maybe you are in the wrong directory, or maybe there is
a typo in the file name), or that it cannot be accessed (maybe you do not have read rights).

5. No applicable method:

droplevels(1:10)

Error in UseMethod("droplevels"): no applicable method for 'droplevels' applied to ar

This can occur when you are trying to apply a function to an inappropriate data type or
object class.

4.4.3 An example

Lets go line-by-line through this piece of code somebody made to print the average length
and standard deviation thereof for each species ordered from light to heavy.

10 learning unit 5

4.4 Debugging 4 THE BASICS

Fist clear our global enviroment so we all start with a clean slate
rm(list=1s())

Set the directory and load the fish data from earlier.
fishData <- read.csv("./RawData/fishData.csv")

#Calculate the mean and standard deviation of the length of the species
size.per.species <- aggregate(fishData,by=list(fishData$speciesList) ,mean)
std.per.species <- aggregate(fishData,by=1list(fishData$speciesList),std)

Order species based on their length
sizes.sorted.by.length <- size.per.species[
order (size.per.species$species.lenght),]

std.sorted.by.length <- std.per.species[
order(size.per.species$species.length),]

print('The species sorted by mass:')
for(i in 1:nrow(sizes.sorted.by.length){
print(paste(i,
. !
sizes.sorted.by.length$Group.1[i,],
', average length: ',
sizes.sorted.by.length$species.length[i],
', sd: ',
std.sorted.by.length$species.length[i],
,sep=""))

And here is the final script after sorting through the errors

Fist clear our global enviroment so we all start with a clean slate
rm(list=1s())

Set the directory and load the fish data from earlier.
fishData <- read.csv("./RawData/fishData.csv")

#Calculate the mean and standard deviation of the length of the spectes
size.per.species <- aggregate(fishData,by=list(fishData$species.list) ,mean)
std.per.species <- aggregate(fishData,by=1list(fishData$species.list),sd)

Order specties based on their length
sizes.sorted.by.length <- size.per.species[
order(size.per.species$species.length),]

std.sorted.by.length <- std.per.species[

11 learning unit 5

5 EXERCISES

order (size.per.species$species.length),]

print('The species sorted by mass:')

[1] "The species sorted by mass:"

for(i in 1:nrow(sizes.sorted.by.length)){
print (paste(i,
sizes.sorted.by.length$Group.1[i],
', average length: ',
sizes.sorted.by.length$species.length[i],
', sd: ',
std.sorted.by.length$species.length[i],
sep="'"))

[1] "1: mackerel, average length: 0.330963108923873, sd: 0.0376415851644494"
[1] "2: herring, average length: 0.335089683570251, sd: 0.0202335581458669"
[1] "3: cod, average length: 0.346675980567795, sd: 0.0260561623063289"

5 Exercises

In the interactive exercises we simulated the masses of three fish species. These data can be
found as a csv file “fish.weight.csv”. Assume that the fish weights are obtained from fishes
caught by fishermen. Every day they caught one fish of each species. The weights of the
fishes caught on day 1 are in row 1, the weights of the fishes caught on day 2 are in row 2,
etc.

1. What is the mean mass of fish caught each day? Calculate with both a for loop and
one of the apply functions

2. What is the mass of the largest fish caught each day? Calculate with both a for loop
and one of the apply functions

3. What is the total mass of fish caught each day? Calculate with both a for loop and
one of the apply functions

The next exercizes are done using “fishdata.csv”.
4. Make a subset of the data for each fish species and store these subsets as different
elements of a list. Extract for each subset the column with the masses of the species

and calculate the average mass for each species. Use both lapply and sapply.

12 learning unit 5

5 EXERCISES

5. Make a histogram of the distribution of species masses for each fish species
The next exercizes are done using “Nijmegen_ trees LU5.csv”.

6. Below, you’ll find a script that was originally made to calculate the mean and standard
deviation of the age of the trees in Lent separated to genus. In it’s current form, the
script does not work, it’s up to you to fix it.

rm(1list(1s()))
trees <- read.csv("./RawData/Nijmegen tees_LU5.csv"))

Let's first remove the trees for which the planting year ts 0
trees <- trees[trees$planting.year != 0]

Now select only trees in Lent
Lent <- trees[trees[,neighbourhood] = 'Lent',]

Now calculate the age
Lent$age <- 2019-Lent$planting.year

Lets add a new column to the data frame which contains the genus of the species
speciessplit <- strsplit(Lent$species,split=' ')

Lent$genus <- unlist(lapply(speciessplit,function(x) head(x)))

Now let's calculate the mean age of the trees im Lent and standard deviation thereof

aggregate (Lent$age,by=Lent$genus,mean)
aggregate (Lent$age,by=Lent$genus,std)

7. Calculate the number of trees in each neighbourhood. Use both tapply and aggregate

8. Calculate the number of trees of each species. Use both tapply and aggregate
The next exercizes are done using “owls.csv”. from LU3

9. Calculate the number of deprived and satiated owls in each nest

10. Calculate the mean brood size and arrival time for each nest
The last exercizes are done using “Primates_ Habitat.csv”. from LUA4.

11. Correct the following R script. This excercise is extra difficult, because there are errors
that do not lead to an error message.

13 learning unit 5

5 EXERCISES

Some hints

o There are several typo’s in the script

e Is the “ 7 in the species column substituted for a blank space

e There are 3 errors in the apply function

o The sum_ habitat for all generalist species is zero, is this correct?

e Does the tapply function gives realistic values for the average body masses?

rm(list=(1s()))

Read the Primates_Habitat data
Primates Habitat <- read.csv("Primates Habitat.csv")

Summary of the dataset
Summary (Primates_Habitat)

Remove rows with NA's in the species column
Primates_Habitat <- Primates_Habitat[complete.cases(Primates_Habitat$species),]

In the column "Species", there is a _ in each species name, substitute this with a bl
gsub("_"," " ,Primates_Habitat$Species)

Make a column with the sum of the values in the columns of the different habitat type
When this sum is 1, the species is a habitat specialist

When the sum is higher than 1, the species is a habitat generalist
Primates_habitat$sum_habitat <- apply(Primates Habitat[,c("Habitat Forest","Habitat Save

Add a column which indicates for each species whether the species is a habitat genersz
or on which habitat the species specializes
for(monkey in 1:Primates_Habitat){

If the sum in the column sum_habitat is larger than 1, the species is a generalist

if (Primates_Habitat$sum_habitat [monkey]<1){
Primates_Habitat$HabStrategy[monkey] <- "Generalist"

} else if (Primates_Habitat$Habitat_Forest[monkey]==1) {
Primates_Habitat$HabStrategy[monkey] <- "Forest specialist"

} else if (Primates_Habitat$Habitat_savanna[monkey]==1) {
Primates_Habitat$HabStrategy[monkey] <- "Savanna specialist"

} else if (Primates_Habitat$Habitat_Shrubland[monkey]==1) {
Primates_Habitat$HabStrategy[monkey] <- "Shrubland specialist"

} else if (Primates_Habitat$Habitat_Grassland[monkey]==1) {
Primates_Habitat$HabStrategy[monkey] <- "Grassland specialist"

} else if (Primates_Habitat$Habitat_Wetlands[monkey]l==1) {
Primates_Habitat$HabStrategy[monky] <- "Wetlands specialist"

14 learning unit 5

5 EXERCISES

} else if (Primates_Habitat$Habitat_Rocky.areas[monkey]==1) {
Primates_Habitat$HabStrategy[monkey] <- "Rocky areas specialist"

} else if (Primates_Habitat$Habitat Desert [monkey]==1) {
Primates_Habitat$HabStrategy[monkey] <- "Desert specialist"

}
print (monkey)

Check whether all generalist species have a sum_habitat larger than one
Primates_Habitat$sum habitat[Primates_Habitat$HabStrategy=="Generalist"&is.na(Primates_!

Also read the data with body mass data of the primates
Primates_BodyMass <- read.csv("Primates BodyMass LU5.csv")

Remove rows with NA's in the species column
Primates_Habitat <- Primates_Habitat[complete.cases(Primates_Habitat$Species),]

In this dataset, also substitute "_" for a blank space in the Species column
Primates_BodyMass$Species<-gsub(" "," ",Primates_BodyMass$Species)

Merge the habitat and body mass dataset
Primates<-merge(Primates_Habitat,Primates_BodyMass,by="Species")

The class of the column BodyMass_kg is a factor, convert to numeric
Primates$BodyMass_kg<-as.numeric(Primates$BodyMass_kg)

Calculate the average body mass for species in the different HabStrategy classes
tapply(Primates$BodyMass_kg,Primates$HabStrategy,mean)

12. In the R script of exercise 11, species that do not occur in any of the habitats are also
called habitat generalists. Can you add extra lines to the for loop that assigns NA’s
in the column HabStrategy for these species.

13. Imagine you want to have the species names in all capital letters, search on the internet
to find a function that can do this for you.

15 learning unit 5

Learning Unit 6 - Making attractive and

informative graphs

Coline Boonman

Contents

1 Learning goals

2 Graphs
2.1 What type of graphs are there? And when to use which?
2.2 Generating informative graphs
2.3 Making graphs more attractive
231 Title
232 Azislabel
233 Amisrange.
234 Size ...
235 Color
2.3.6 Symbols and lines
2.3.7 Adding additional points or lines
238 Legend
239 Adding lines.
2.3.10 Additional text
2.3.11 Multi-plot figure
2.3.12 Saving graphs

3 Live example: Trees in Nijmegen

3.1 Basicgraphs. o
3.1.1 Histogram
3.1.2 Scatter plot
3.1.3 Lineplot
3.14 Boxplot
3.1.5 Barplot

© © 0o 0w W L B~ W W

e e e e e T
Tt = = W = O

CONTENTS CONTENTS

3.1.6 Dot chart 24

3.2 Making graphs more attractiveo 25
321 Title 26

3.2.2 Amislabelo 27
3.2.3 Change point type 28
3.24 Change Size 29
325 Addlines 30
3.2.6 Additional text 31
3.2.7 Color 32
328 Legend 33
3.2.9 Multi-plot 34
3.2.10 Saving the image 36

4 Individual exercises 38
4.1 Questions 38

2 Learning Unit 6

2 GRAPHS

1 Learning goals
After this learning unit is completed, you should be able to:

o produce the following plot types: histogram, scatterplot, line plot, dot chart, bar plot,
and boxplot.

« change colors and size of text, points, lines, bars.

» to add a legend, a main title, axis labels, and text to a plot.

o plot multiple plots in 1 figure.

e add lines to a plot.

2 Graphs

2.1 What type of graphs are there? And when to use which?

Depending on the question you want to answer, different type of graphs are used.

Histograms are used to explore the data you have. It visualizes the distribution of a numeric
variable in your dataset. On the X-axis, the range of values in your variable is depicted, and
on the Y-axis the frequency is shown. This frequency is how often that specific x-value is
present in that variable in your dataset (unless specified differenty).

Scatter plots are used to visualise variation in your data. You can plot two numeric
variables from your dataset against each other, where one is depicted on the X-axis and the
other on the Y-axis. Again, the range of values on both axes is the range of values present
in that variable in your dataset (unless specified differenty).

Line plots can help visualise trends in your data. You can plot two numeric variables from
your dataset against each other, where one is depicted on the X-axis and the other on the
Y-axis. Different from the scatterplot, a line plot is used only when one value of Y exists for
one value of X. An example for this is plotting the amount of babies born in The Netherlands
(on the y-axis) per year (on the x-axis). Also in line plots, the range of values on both axes
is the range of values present in that variable in your dataset (unless specified differenty).

Boxplots help you to explore the variation within categories. You can plot a categorical
variable against a numeric variable from your dataset, where the different categories in the
categorical variable are depicted on the X-axis and the numeric variable is shown on the
Y-axis. A box is comprised of the median (thick horizontal bar), first and third quartile
(lower and upper horizontal bar of the box, respectively), and the whiskers (minimum and
maximum value). Also in boxplots, the range of values on the Y-axis is the range of values
present in that variable in your dataset, and the categories plotted on the X-axis are all the
categories that exist in that variable in your dataset (unless specified differenty).

Dot charts helps you to explore differences between categories. You can plot a categorical
variable against a numeric variable from your dataset, where the different categories in the
categorical variable are depicted on the Y-axis and the numeric variable is shown on the

3 Learning Unit 6

2.2 Generating informative graphs 2 GRAPHS

X-axis. Please note that only one value of X should exist per category, which makes the
dot chart different from the box plot. In dot charts, the range of values on the X-axis is
the range of values present in that variable in your dataset, and the categories plotted on
the Y-axis are all the categories that exist in that variable in your dataset (unless specified
differenty).

Bar plots are used to show variation between categories. You can plot a categorical variable
against a numeric variable from your dataset, where the different categories in the categorical
variable are depicted on the X-axis and the numeric variable is shown on the Y-axis. As a
standard, mean values of the numeric variable are depicted, as opposed to boxplots, and you
can add error bars that show the variation within a category (standard deviation or standard
error). The range of values on the Y-axis is the range of values present in that variable in
your dataset, and the categories plotted on the X-axis are all the categories that exist in
that variable in your dataset (unless specified differenty).

2.2 Generating informative graphs

data = data.frame(X=c(3,6,9,7,20),
Y=c(7,9,11,8,13),
Z=c("cat" s "cat" s "dOg” s ndogu s Ildogll))

Histogram

numeric wvariable.

Between brackets include: a column of a dataset or include a wvector
hist (data$X)

4 Learning Unit 6

2.2 Generating informative graphs 2 GRAPHS

Histogram of data$X

o
S
Lo
0
o
>
T v
> o
Q
L o
S
o _|
o
o |
e | I I I |
0 5 10 15 20
data$Xx

Scatter plot
X and Y need to be numeric. p informs R to make points.
plot(Y ~ X, data, type='p') #equal to plot(data$X, datadY, type='p')

o™
H O

12

11
I
o

) Learning Unit 6

2.2 Generating informative graphs 2 GRAPHS

Line plot
X and Y need to be numeric. 1l informs R to make a line
plot(Y ~ X, data, type='l') #equal to plot(data$X, data$?, type='Ll')

(42)
i

12

11
I

9
I

8
I

Box plot
Z needs to be categorical, and Y needs to be numeric.
boxplot(Y ~ Z, data)

o _ N —
H 1

1

1

1
o _|
i

|
m_ 1

:

1

1
w_ S S —
'_

cat dog

6 Learning Unit 6

2.2 Generating informative graphs 2 GRAPHS

Dot chart

X needs to be numeric

dotchart (data$X)

... O

.............................. o

... O

....................... O

O ..
[[[[
5 10 15 20

Bar plot

Between brackets include: name of a table with categories and their frequency
barplot (table(data$z))

00 05 10 15 20 25 3.0

cat dog

7 Learning Unit 6

2.3 Making graphs more attractive 2 GRAPHS

2.3 Making graphs more attractive

The graphs made in the previous section are very informative and they can answer quick
questions about your dataset. However, when you want to use the graph in an article, thesis,
report, etc. there might be some things you want to change. In this section, we will provide
you with the basic tools to improve the estatics of the graphs to increase interpretability and
readability.

2.3.1 Title
Adding a title to your graph.

main='Title'

2.3.2 Auxis label
Adding a clear label to the axes of your graph.

For numeric wvariables
xlab='name X-axis'
ylab='name Y-axis'

For categoric wvartiables

step 1. Check what categories there are, and in what order they are listed.
unique (df$variable)

step 2. Rename the catagories.

names.arg=c('X','Y') # for bar plots

labels=c('X','Y") # for dot charts

2.3.3 Axis range

Changing the limit of the axis that is plotted for numeric variables.

xlim=c (min,max)
ylim=c(min,max)

It is also usefull to have be able to remove the ‘additional margin’ at the lower and upper
end of an axis.

Add this in your plot() lines of code

xaxs="1"
yaxs="1i"

8 Learning Unit 6

2.3 Making graphs more attractive 2 GRAPHS

2.3.4 Size

Changing the size of text or symbols is done with the word ‘cex’. This is a numerical indicator
of size change relative to the default.

cex.axis # continuous axis
cex.names # categorical azis
cex.lab # labels (axzis title)

cex # symbol size
1lwd # line width
#example

cex=1.5 # increased with half the original size

2.3.5 Color

Adding colors to your graph: text, symbols, lines, bars.
col.axis # color axis

col.lab # color label

col.main # color title

col # symbols or lines

#example
col='red' # color is red

9 Learning Unit 6

2.3 Making graphs more attractive 2 GRAPHS
#1
white bisque2 . burlywood4 . coral4 . darkgreen
aliceblue bisque3 . cadetblue . cornflowerblue darkgrey
antiquewhite . bisque4 cadetblue1 cornsilk darkkhaki
antiquewhite1 . black cadetblue2 cornsilk1 . darkmagenta
antiquewhite2 blanchedalmond cadetblue3 cornsilk2 . darkolivegreen
antiquewhite3 . blue . cadetblue4 cornsilk3 darkolivegreen1
. antiquewhite4 . blue1 chartreuse . cornsilk4 darkolivegreen2
aquamarine . blue2 chartreuse1 cyan darkolivegreen3
aquamarine . blue3 chartreuse?2 cyan1 . darkolivegreen4
aquamarine2 . blue4 . chartreuse3 . cyan2 . darkorange
aquamarine3 . blueviolet . chartreuse4 . cyan3 . darkorange1
. aquamarine4 . brown . chocolate . cyan4 . darkorange2
azure . brown1 . chocolate1 . darkblue . darkorange3
azure1 . brown2 . chocolate2 . darkcyan . darkorange4
azure2 . brown3 . chocolate3 . darkgoldenrod . darkorchid
azure3 . brown4 . chocolate4 darkgoldenrod1 . darkorchid1
. azured burlywood . coral darkgoldenrod2 . darkorchid2
beige burlywood1 . corall . darkgoldenrod3 . darkorchid3
bisque burlywood?2 . coral2 . darkgoldenrod4 . darkorchid4
bisque1 burlywood3 . coral3 darkgray . darkred

2.3.6 Symbols and lines

Changing the type of symbol and/or line using a numerical indicator.

pch # symbol

1ty # line type
#example

pch=2 # triangle
1ty=3 # dotted line

10 Learning Unit 6

2.3 Making graphs more attractive

2 GRAPHS

0[]

1

—= Mo Ison m
|

6%/

7

8=

128

13

14 1)

1518

16@

174

186 &

19@®

210

2200

B3O

plot symbols : pch =

24 £

2557

no%k

0O

o0

Line Types: Ity=

2.3.7 Adding additional points or lines

You might want to create a figure and add additional points or lines from other datasets, or

from the same dataset but with different subsets.

lines()
points()

add lines to the same graph
add points to the same graph

NOTE Make sure to adjust the = and y limits in the first plot

in order to make all additional points and lines visible

11

Learning Unit 6

2.3 Making graphs more attractive

2 GRAPHS

#example

data = data.frame(X=c(3,6,9,7,20),
Y=c(7,9,11,8,13),
Z=c(1,1,1,2,2))

plot(Y ~ X, data, type='p', x1lim=c(0,20)) # Scatterplot
points(Y ~ Z, data, col="red") # Add points

N o o

N

i

> 9 -

o o o

0 — o o

~ o o)
I I I I I
0 5 10 15 20

X

plot(Y ~ X, data, type='l',x1im=c(0,20)) # Line plot
lines(Y ~ Z, data, col="red") # Add a line

12

Learning Unit 6

2.3 Making graphs more attractive 2 GRAPHS

12 13

11
I

8
I

2.3.8 Legend

Adding a legend to your graph is usefull when you use colors that are not indicated in text

of axes or labels.

legend(x = ,
y =
legend = c(),
title="text",
col = c(Q),
cex = ,
pch =)

or

legend("position",
legend = c())

#example

BHOWHOR KR R R R R

number of x-coordinate where legend needs to be placed
number of y-coordinate where legend needs to be placed
vector with unique categories that go into the legend
add a legend title

vector with the colors, as defined in the plot
increase the size of the legend

tndicate which point type you want.

change pch= into lty= (and lwd=) if you want a line.

"top", "topright", "bottomleft", "left", etc
vector with unique categories that go into the legend)

legend(x=1, y=1, legend=c(unique(df$cat)), fill=df$cat, cex=1.5)

The categoric wvartable in the legend should be a character!
Otherwise, the legend is not plotted correctly.

You can check this with str(df)

You can change this with df$cat<-as.character(df$cat)

13 Learning Unit 6

2.3 Making graphs more attractive 2 GRAPHS

2.3.9 Adding lines
Adding a line to your graph.

abline(a, b) # a is the intercept and b is the slope

#example
abline(h = 1) # horizontal line crossing the Y-azis at Y=1
abline(v = 1) # wertical line crossing the X-azis at X=1

abline(0, 1) # tilted line crossing Y-azis at Y=0 with a slope of 1

2.3.10 Additional text

Adding additional text to your graph can help interpret the results.

text(x = , # number of x-coordinate where text needs to be placed
vy =, # number of y-coordinate where text needs to be placed
labels = c()) # text to be written

#example
text(x=1, y=1, 'hello')

2.3.11 Multi-plot figure

Having mupliple graphs that belong to each other into one figure is usefull; it save time (no
need to save each graph seperately’, and it makes estetically pleasing figures (graphs are all
placed with the same distance from each other).

par() # general call for plots

mfrow=c(rows,columns)
the amount of rows and columns you want in your figure
each graph ts placed in one cell.

mar=c(b,1,t,r)
marging around the graph. b=below, l=left, t=top, r=right of the plot

oma=c(b,1,t,r)
outer margin area (space between graphs in a multi-plot figure).
Abbreviations as in mar().

#example

par (mfrow=c(1,2),
oma=c(0,0,0,2))

14 Learning Unit 6

2.3 Making graphs more attractive 2 GRAPHS

If you want to create a title for the complete multi-plot figure, use mtext(), similar to text()
in Additional text.

2.3.12 Saving graphs

Once you have created a nice graph, you want to save it in order to put it into your report.
There are two ways of doing this:

1. By clicking Plots in the lower right quadrant of your RStudio window. Then click
FExport and select the format you want to save your graph in.
2. By coding: (faster - less actions to be taken)

jpeg()

png ()

pdf O

close off with: dev.off()

This indicates the end of the code that needs to be saved as a figure.

#example

jpeg("hello.jpeg") # name of the image

plot (O # add the code of the graph you want to save
abline () # this can also include lines and text
dev.off () # close of with dev.off()

NOTE if the saved figure is not in the correct width - height ratio,
you can adjust this by adding width and height (in pizels for images,
and in inch for pdf)

jpeg("hello. jpeg", width=100, height=80)

15 Learning Unit 6

3 LIVE EXAMPLE: TREES IN NIJMEGEN

3 Live example: Trees in Nijmegen

3.1 Basic graphs

First, we will run through some standard code for each graph type.

We will use the dataset containing data of trees in Nijmegen. This dataset includes the
following variables:

o ID - Number for each individual

o species - Species name

o planting.year - Year the individual is planted

 zip.code - Zip code of the location of the individual

« neighbourhood - Neighbourhood of the location of the individual
 height - Height of the individual

First set the working directory
setwd(" ")

Read in the data
my.df<-read.table("Nijmegen trees LU6.csv", header=T, sep=" ")

Now, we want to explore the data in our dataset.

Check what data is in this dataset

str(my.df)

'data.frame': 44276 obs. of 6 variables:

¢ ID : int 256 257 258 259 260 261 262 263 264 265 ...

$ species : Factor w/ 470 levels "","Abies","Abies nordmanniana",..: 59 59 59 59 59 5¢
§ planting.year: int 1930 1930 1930 1950 1960 1950 1950 1930 1930 1930 ...

$ zip.code : int 6524 6524 6524 6524 6524 6524 6524 6524 6524 6524 ...

$ neighbourhood: Factor w/ 2404 levels "Altrade","Biezen",..: 6666666666 ...

$ height :num 8.89 4.23 8.16 8.95 10.93 ...

head (my.df)

#i#t ID species planting.year zip.code
1 256 Aesculus hippocastanum Baumannii 1930 6524
2 257 Aesculus hippocastanum Baumannii 1930 6524
3 258 Aesculus hippocastanum Baumannii 1930 6524
4 259 Aesculus hippocastanum Baumannii 1950 6524
5 260 Aesculus hippocastanum Baumannii 1960 6524

16 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN

6 261 Aesculus hippocastanum Baumannii 1950 6524
neighbourhood height
1 Galgenveld 8.891099
2 Galgenveld 4.229524
3 Galgenveld 8.155946
4 Galgenveld 8.952107
5 Galgenveld 10.930223
6 Galgenveld 6.220409

summary (my . df)

ID species planting.year zip.code

Min. : 1 Quercus robur : 4592 Min. : 0 Min. 16511
1st Qu.:13112 Tilia x europaea : 3245 1st Qu.:1970 1st Qu.:6525
Median :26483 Fraxinus excelsior: 2447 Median :1980 Median :6534

Mean :30679 Fagus sylvatica : 1969 Mean :1976 Mean :6538
3rd Qu.:47386 Quercus rubra : 1935 3rd Qu.:1995 3rd Qu.:6541
Max. 173303 (Other) :30078 Max. :2019 Max. 16663
NA's 01 NA's : 10 NA's 01

#it neighbourhood height

Meijhorst : 4725 Min. : 1.735

Goffert . 3469 1st Qu.: 6.997

Zwanenveld : 3340 Median : 8.007

Hatert . 2885 Mean : 8.009

Brakkenstein: 2629 3rd Qu.: 9.026

Hengstdal : 2503 Max. :14.539

(Other) 124725

Remove NA from dataset
my.df<-na.omit (my.df)

3.1.1 Histogram

Now we have seen which variables are numeric, we can investigate how this data is dis-
tributed:

hist(my.df$planting.year)

17 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN
Histogram of my.df$planting.year
_ .
o
O p—
o
o™
> 8
c o —
Q o
> N
O
3 _
LL o
o
O —]
o
—
O p— ——1

I I I I
500 1000 1500 2000

my.df$planting.year

Isn't it nicer to look at the age?
my.df$age<-2019-my.df$planting.year
hist (my.df$age)

Frequency

30000
I

10000
I

0
I

Histogram of my.df$age

I I I I
500 1000 1500 2000

my.df$age

18 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN

A tree of 1000 years old seems like there has been a mistake.
#Remove this individual from the dataset.

my .df<-my.df [my.df$age<1000,]

hist (my.df$age)

Histogram of my.df$age

o
o
o —
[qV}
—
>
5 g |
g ®
(ox
9 p—
L o
o _|
o
<
O —
[[[[[|
0 50 100 150 200 250
my.df$age

Now we can actually see how the distribution of tree age in Nijmegen

The other numeric wvartable in the dataset %s height.
hist(my.df$height) # this trait is normally distributed.

19 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Histogram of my.df$height

o
o
O J—
o
i
>
g 8
S 8]
(on
o
u p—
o
o _|
o
[V}
O 1 r—l— I
| I I I I I |
2 4 6 8 10 12 14
my.df$height

3.1.2 Scatter plot

Another interesting question we can look at is ‘are all trees of the same age of the same
height?’ In other words, how much variation in height is there with different ages?

plot(height ~ age, data=my.df, type="p") # points

20 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN

<
—
8o
S |
he Q
i) 8 o
8 I i O 8 8 g
5 1l 1z
g Tl o
: °¢ o o
© -] O o g
s 18860 o
< - g 8 o o
O
N —
| | |
150 200 250

age
Question Can you see the vertical lines in the plot? What could this mean? Trees have been

planted in ‘programs’ (many trees at the same time) and those trees have different heights

3.1.3 Line plot

Now we have seen that trees have been planted by ‘program’; we can plot the actual number
of trees that have been planted in each year:

step 1. create a new dataset: the sum of all individuals planted per year.
my.df$nr.ind<-1 # create a column with the number 1 (1 row = 1 individual)

new.df<-aggregate(nr.ind ~ planting.year, data=my.df, FUN = "sum"

step 2 make the plot
plot(nr.ind ~ planting.year, data=new.df, type="1") #lines

21 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN

5000

nr.ind
3000

0 1000

I I I I I I
1750 1800 1850 1900 1950 2000

planting.year

step 3. let's zoom in a bit
plot(nr.ind ~ planting.year, data=new.df, type="1", x1im=c(1950,2019)) #lines

5000

nr.ind
3000
|

1000

L

I I I I I I I I
1950 1960 1970 1980 1990 2000 2010 2020

0
I

planting.year

3.1.4 Box plot
These planting programs have probably not occured throughout the whole city each year.

What is the age of trees in different neighbourhoods? More specifically, what is the variation
in tree age for the different neighbourhoods?

22 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Let's look at the following neighbourhoods:
city center, Lent, Brakkenstein (old and new parts of the city)
new.df<-my.df [my.df$neighbourhood=="Stadscentrum" |
my .df$neighbourhood=="Lent" |
my .df$neighbourhood=="Brakkenstein",]
Since many more neighbourhoods are originally in this dataset,
we actually need to 'drop levels':
remove all the categories in this wvariable we are not interested in
new.df$neighbourhood<-droplevels (new.df$neighbourhood)
boxplot (age ~ neighbourhood, data=new.df)

o (@)
Lr) p—
AN
o o)
O —
AN
o
= g
o | :
S 4 . 8
— :
o 8 |
— —Q

I | ' l .
o _ L]

| | |

Brakkenstein Lent Stadscentrum

To remove outliers from the plot, you can add outline=FALSE
boxplot (age ~ neighbourhood, data=new.df, outline=FALSE)

Question What do the boxes mean? median, 25th and 75th quantile, and minimum an
mazimum value

3.1.5 Bar plot

At this point, we might wonder about the species that actually have been planted throughout
all those years.

create a table with all the specties and the frequency of each species
species.table<-table(my.df$species) #There are too many species for one plot

Let's select some common species and see how many there are in Nijmegen
new.df<-my.df [my.df$species=="Betula'"| # in Dutch: Berk

23 Learning Unit 6

3.1 Basic graphs 3 LIVE EXAMPLE: TREES IN NIJMEGEN

my.df$species=="Alnus" | # in Dutch: Els
my.df$species=="Platanus orientalis",] # <n Dutch: Plantaan
new.df$species<-droplevels(new.df$species) # remove all the other categories
species.table<-table(new.df$species)
barplot(species.table)

8 10 12 14

6
I

Alnus Betula Platanus orientalis

3.1.6 Dot chart

What is the greenest neighbourhood of Nijmegen (in terms of trees)? In other words, how
many trees are there per neighbourhood?

Create a new dataframe with the number of trees per neighbourhood and
the names of the meighbourhood as Tow names

my.df$nr.ind<-1

new.df<-aggregate(nr.ind ~ neighbourhood, data=my.df, FUN = "sum"
row.names (new.df)<-new.df$neighbourhood

Since there are way too many metghbourhoods.

Let's organise and only look at 15 neighbourhoods.

new.df2<-new.df [1:15,]

dotchart(new.df2%$nr.ind, labels=row.names(new.df2))

24 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Meijhorst o
Lent o

Hunnerberg o

Heseveld o

Hengstdal o)

Hazenkamp o

Hatert o}
Grootstal o

Goffert o
Galgenveld o

De Kamp o

Brakkenstein o)

Bottendaal 0

Biezen o

Altrade ¢}

I I I I
1000 2000 3000 4000

3.2 Making graphs more attractive

In section 2.3 a few hints are given to improve the visuals of graphs. Let’s use them in
this practical. We will do this by answering the question Which neighbourhood is the
greenest?

First, we create a dataframe that can be used for dot charts with the amount of trees in a
neighbourhood.

new.df<-aggregate(nr.ind ~ zip.code, data=my.df, FUN = "sum"

new.df2<- new.df [new.df$zip.code==6511| # city center
new.df$zip.code==6525| # university campus (Brakkenstein)
new.df$zip.code==6663| # Lent
new.df$zip.code==6531,] # Coline

row.names (new.df2)<-new.df2$zip.code

dotchart (new.df2$nr.ind, labels=row.names(new.df2))

25 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

6663 o
6531 | ©
6525 o
6511 o}
I I I I I
1800 2000 2200 2400 2600
3.2.1 Title

dotchart (new.df2$nr.ind, labels=row.names(new.df2),
main="Greenest neighbourhood")

Greenest neighbourhood

6663 o
6531 | ©
6525 o
6511 o
I I I I I
1800 2000 2200 2400 2600

26 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

3.2.2 Axis label

include label for z—-azis

dotchart(new.df2%$nr.ind, labels=row.names(new.df2),
main="Greenest neighbourhood",
xlab="Number of trees")

Greenest neighbourhood

6663 o
6531 | ©
6525 o
6511 o}
I I I I I
1800 2000 2200 2400 2600

Number of trees

change Y aztis -—-> categorical
step 1. check what categories we have and in what order
new.df2

#i# zip.code nr.ind
6511 6511 1883
6525 6525 2629
6531 6531 1643
6663 6663 1979

y azxis 1s ordered on zip code

dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
x1lab="Number of trees",
labels=c("City center", #6511

27 Learning Unit 6

3.2 Making graphs more attractive

3 LIVE EXAMPLE: TREES IN NIJMEGEN

Lent

Coline

University campus

City center

"University campus", #6525
"Coline", #6531

"Lent" #6663

))

Greenest neighbourhood

I I I I
1800 2000 2200 2400

Number of trees

3.2.3 Change point type

dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
xlab="Number of trees",
labels=c("City center", #6511

pch=19)

"University campus", #6525
"Coline", #6531

"Lent" #6663

),

28

I
2600

Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Greenest neighbourhood

Lent °

Coline °®

University campus o

City center [

I I I I I
1800 2000 2200 2400 2600

Number of trees

3.2.4 Change size

dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
x1lab="Number of trees",
labels=c("City center", #6511
"University campus", #6525
"Coline", #6531
"Lent" #6663
),
pch=19,
cex=1.3, cex.main=1.7)

29 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Greenest neighbourhood

Lent °
Coline ®
University campus °
City center °
| | | |
1800 2200 2600

Number of trees

3.2.5 Add lines

dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
xlab="Number of trees",
labels=c("City center", #6511
"University campus", #6525
"Coline", #6531
"Lent" #6663
)
pch=19,
cex=1.3, cex.main=1.7)

Let's say, we consider a neighbourhood green if it has more than 2000 trees.
abline (v=2000, lwd=3, lty=2)

30 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Greenest neighbourhood

|
Lent 0:
Coline ° |
|
University campus I °
City center ° :
|
| ! | |
1800 2200 2600

Number of trees

3.2.6 Additional text

dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
xlab="Number of trees",
labels=c("City center", #6511
"University campus", #6525
"Coline", #6531
"Lent" #6663
)
pch=19,
cex=1.3, cex.main=1.7)

abline(v=2000, lwd=3, 1lty=2)

text (x=2200,y=4.5,"green" ,cex=1.5)
text (x=1800,y=4.5,"not green",cex=1.5)

31 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Greenest neighbourhood

not green : green

Lent o|
Coline ° |

|
University campus I °
City center ° :

|

| | | |
1800 2200 2600

Number of trees

3.2.7 Color

dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
xlab="Number of trees",
labels=c("City center", #6511
"University campus", #6525
"Coline", #6531
"Lent" #6663
)
pch=19,
cex=1.3, cex.main=1.7)

abline(v=2000, lwd=3, 1lty=2)

text (x=2200,y=4.5,col="green',"green",cex=1.5)
text (x=1800,y=4.5,col='red',"not green",cex=1.5)

32 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

Greenest neighbourhood

not green : green

Lent o|
Coline ° |

|
University campus I °
City center ° :

|

| | | |
1800 2200 2600

Number of trees

3.2.8 Legend

Now we want to see how the height of the tree relates to it’s age, and if this differs between
neighbourhoods.

plot(height ~ age, col=neighbourhood, data=my.df, type="p") # points

3 - :
o | =R { s 8
c ;;F 88 8 g
2 _ == S o] 0
o 9 a E g “Og
= S N B g 8 0O
© - : @ % 0o o @)
< 6% o o)
(@)
N p—
[[[[[[
0 50 100 150 200 250
age

33 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

There are way too many neighbourhoods to make sense out of the color scheme.

#Let's make 1t simple and look at two megihbourhoods only.
my.df2<- my.df [my.df$zip.code==6511| # city center
my.df$zip.code==6525,] # university campus (Brakkenstein)

Set a color scheme
cols<-c("red","pink")
plot(height ~ age, col=cols, data=my.df2, type="p", pch=19) # points

To know which color represents which neighbourhood, we should include a legend.
legend("topright", title="Zip code",
legend=c(unique (my.df2$zip.code)),col=cols,pch=19) #vector with the labels

S | e Zip code
o o
~ ® 6525
— 7 6511
°
8 | = $ ' o
£ E;:c.
g @ - LR
oo ©
‘ [] . e °
O — :V ®
» 4 [] o
v
< i ®
[[[[[[
0 50 100 150 200 250
age

3.2.9 Multi-plot

par (mfrow=c(2,2))

Graph 1
dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
xlab="Number of trees",
labels=c("City center", #6511
"University campus", #6525

34 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

"Coline", #6531
"Lent" #6663
),

pch=19,

cex=0.9, cex.main=1)

abline(v=2000, lwd=3, lty=2)

text (x=2200,y=4.5,col="green',"green",cex=1)
text (x=1800,y=4.5,col="'red',"not green",cex=1)

This creates an empty plot, thereby skipping a place in the par() settings
plot.new()

Graph 2

plot(height ~ age, col=cols, data=my.df2, type="p", pch=19) # points

legend("topright", title="Zip code",
legend=c(unique(my.df2$zip.code)),col=cols,pch=19) #vector with the labels

Also fill the last quarter by an empty plot

plot.new()
Greenest neighbourhood
Lent npraregareen
Coline |
University campus
City center ®,
|
1800 2400
Number of trees
N Zip code
= —
S ﬁ} 7 4 "»«u ® 6525
2 ° Y 6511
< ¥ || 3
| | | | | |
0 50 100 150 200 250

age

35 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

3.2.10 Saving the image

The image above doesn’t look good at all. In order to save the image propperly, we need to
change some settings.

jpeg("Save.live.example. jpeg")
par (mfrow=c(2,1))

Graph 1
dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
x1lab="Number of trees",
labels=c("City center", #6511
"University campus", #6525
"Coline", #6531
"Lent" #6663
)
pch=19,
cex=1.3, cex.main=2)

abline(v=2000, lwd=3, 1lty=2)

text (x=2200,y=4.5,col="'green',"green",cex=2)
text (x=1800,y=4.5,col='red',"not green",cex=2)

Graph 2
plot(height ~ age, col=cols, data=my.df2, type="p", pch=19) # points
legend("topright", title="Zip code",

legend=c(unique (my.df2$zip.code)),col=cols,pch=19) #vector with the labels

dev.off ()

Not everything is vistble in the saved image as in the figure under 3.2.9.
We need to set the size of the image in order to have everthing in there.
jpeg("Save.live.example2. jpeg",width=500,height=500)

par (mfrow=c(2,1))

Graph 1

dotchart (new.df2$nr.ind,
main="Greenest neighbourhood",
xlab="Number of trees",
labels=c("City center", #6511

36 Learning Unit 6

3.2 Making graphs more attractive 3 LIVE EXAMPLE: TREES IN NIJMEGEN

"University campus", #6525
"Coline", #6531
"Lent" #6663

),
pch=19,
cex=1.3, cex.main=2)

abline (v=2000, lwd=3, lty=2)
text (x=2200,y=4.5,col="green',"green",cex=2)

text (x=1800,y=4.5,col="'red',"not green",cex=2)

Graph 2
plot(height ~ age, col=cols, data=my.df2, type="p", pch=19) # points
legend("topright", title="Zip code",

legend=c(unique (my.df2$zip.code)),col=cols,pch=19) #vector with the labels

dev.off ()

37 Learning Unit 6

4 INDIVIDUAL EXERCISES

4 Individual exercises

For the individual exercise we will use a different dataset. This dataset contains plant trait
data of Chinese savanna tree species. Samples are taken in the dry valley near Yuanjian,
Yunnan, China. These savanna systems are being grazed by herbivores. For trees to survive,
they need to have a form of defense. In general, we can classify species into two types of
defense: structural and non-structural. The structural defenders are more bush-shaped and
have many branches and/or spines that prevent leaves on the inside of this structure to be
eaten. Non-structural defenders have the tendancy to grow tall, so that herbivores simply
cannot reach their leaves anymore. The data in the dataset is sampled along a gradient of
herbivore pressure.

The dataset contains the following data:

« OBS - observation number (unique number for each sampled tree) integer
o SPP - species name categoric

o GRAZING - indication if the area is grazed or not (Yes/No) categoric

o H - tree height (meter) numeric

o CA - canopy area (square meter) numeric

o LS - leaf size (square mili meter) numeric

« SD - is this species a structural defender (Yes/No) categoric

« SPINE - does this individual have spines (Yes/No) categoric

data<-read.table("Chinese.savanna.trees _trait.data.txt",header=TRUE,dec=".")

4.1 Questions

To get you started, here are some instructions:

o Step 1. What traits are there?

o Step 2. How are these traits distributed? Do we need to transform any?

o Step 3. Make a graphs that best answers the question. Note, you might need to create
a data table that is different from the dataset in order to make the graph.

Question 1 - Do traits differ between species of the two defense mechanisms?

Question 2 - Do traits change plastically with herbivore pressure? Is this different
for the two different defense mechanisms?

Question 3 - Do traits scale allometrically with height? Well, the answer is right
below, but we want you to plot the relationships anyway. Leaf size relates with height with
the following relationship: LS=0.18 H+2.69 with an R-squared of 0.08 Canopy area relates
with height with the following relationship: CA=0.95H+0.13 with an R-squared of 0.7 Don’t
forget to add this information to each graph.

38 Learning Unit 6

LU7: Pseudocode and functions

With exercises

Michela Busana € Konrad Mielke

michela.busana@ru.nl € k.mielke@science.ru.nl

Contents

1

2

Learning goals

Pseudocode
2.1 What it is and why it isusefulo
2.2 Making Dutch sandwiches Lo
2.3 An example: the life cycle of Boloria eunomia

Writing functions in R

3.1
3.2
3.3
3.4
3.5
3.6

Structure and syntax of a function
Error messages
Global and local variables 0oL
Calling functions

Cooking recipe: How to write a function?

Bonus for the brain: Efficiency and tips

Functions can be arguments too
Calling functions in the body
Apply user-defined functionso
Writing stable functions o000

5.1
5.2
2.3
5.4

The interactive part of the class

Exercises

7.1 (Difficulty:
7.2 (Difficulty:
7.3 (Difficulty:
7.4 (Difficulty:
7.5 (Difficulty:
7.6 (Difficulty:
7.7 (Difficulty:

CASY) o e e e e
intermediate) oo oL

intermediate) oo

17

18
19
19
21
21

23

mailto:michela.busana@ru.nl
mailto:k.mielke@science.ru.nl

2 PSEUDOCODE

1 Learning goals

By the end of the class we will be able to:

1. Apply fundamental tools to plan and organize code
2. Write functions

2 Pseudocode

2.1 What it is and why it is useful

Q | BONUS: Definition |

Coding is essentially taking a difficult problem and breaking it down into simple steps
that a computer can understand.

The pseudocode is a simplified and clear way of expressing an algorithm in a spoken
language.

When we code, we need to take a small amount of time to plan what exactly we want to do.
This plan is called pseudocode.

Pseudocoding is similar to making an outline or structure before starting to write a
manuscript. This structure is the foundation on which to develop both a manuscript or
programme.

Planning ahead can save a lot of time, e.g., through the anticipation of potential problems.
If we write proper pseudocode, we will be prepared for potential issues and prevent them.
While, if we did not anticipate the issues, they would occur and we would have to do a lot
of searching before we can find out where the bugs/errors are.

The pseudocode can be kept at the top of a script or integrated into the code in the form of
comments. Both strategies will help us and also other users to understand our scripts.

Writing proper pseudocode always starts by asking what the problem is and what our goal is.
If at the beginning it takes some practice to write efficient pseudocode, hang on! After the
learning curve is over, we will be addicted to good organization. Writing smart pseudocode is
also a critical transferrable skill that we can implement in any other programming language.

To better explain the concept, we will do an interactive example in class.

2.2 Making Dutch sandwiches

Let’s write down the pseudocode for an algorithm to prepare a traditional Dutch sandwich
with butter and hagelslag.

2 R Course 2019, LU7

2.3 An example: the life cycle of Boloria eunomia 2 PSEUDOCODE

—_

take the bag of bread
2. if the bag is closed
i. open the bag
take a slice of bread
4. if the slide of bread is not covered with butter
i. pick a knife carefully from the handle
ii. take the butter
iii. ¢f the butter is closed
e open the butter
iv. scratch about a spoon of butter
v. spread the butter uniformely on the bread
5. if the slice of bread is covered with butter
i. take the box of hagelslag
ii. ¢f the box of hagelslag is closed
1. open the box
iii. gently sprinkle the sandwich with hagelslag
6. place the slice of bread on the plate

@

2.3 An example: the life cycle of Boloria eunomia

The Boloria eunomia (or Proclossiana eunomia) is an endangered butterfly typical of the
Northern Hemisphere (see Neve G. et al. 2008 and Figure 1). The species has seen a sharp
reduction due to habitat fragmentation.

Figure 1 European distribution of Boloria eunomia as reported by Neve G. et al. 2008. The
numbers 1, 2, and 3 represent the locations where the authors collected the data.

Butterflies are insects and undergo complete metamorphosis, in which there are four distinct
stages: egg, larva (caterpillar), pupa (chrysalis), and adult. The Boloria eunomia is very
sensitive to external temperatures and is expected to decline even further due to climate
change. Previous studies showed that some life-history stages are more sensitive to rising

3 R Course 2019, LU7

https://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-8-84
https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2656.2012.02029.x

2.3 An example: the life cycle of Boloria eunomia 2 PSEUDOCODE

temperature than others. More specifically, pupae are the most sensitive and a high mortality
rate is associated with high temperatures. Figure 2 represents a drawing of the life cycle of
Boloria eunomia.

Temp

o &
) o @
o oz 'eggs

o gl

Figure 2 Simplified life cycle of Boloria eunomia. Eggs survive to transition to the larval
stage with probability p;. Egg survival depends on the total number of eggs present (density
dependence or DD), such that when the number of eggs increases their survival probability
decreases. Surviving larvae transition to become pupae with probability ps;. This probabil-
ity is highly affected by the temperature of the environment. Pupae become adults with
probability p3. Adults produce eggs.

We want to predict if the species will go extinct under a future climate scenario of +2°C'
by developing an individual-based model (IBM). IBMs are simulations of individuals in a
population or ecosystem that mimics the interactions between individuals and the environ-
ment. Individuals and their properties are followed through their life, and relevant trends
are summarized at the individual, population and community levels. They are used often to
inform management and conservation practices or to investigate theoretical questions. They
are useful to understand mechanisms driving patterns because it is easy to manipulate the
models and observe their dynamics. We will learn further in the next lecture how we can
use R to generate data.

4 R Course 2019, LU7

2.3 An example: the life cycle of Boloria eunomia 2 PSEUDOCODE

Solution

How can we build an IBM for the Boloria eunomia?

We start from the life cycle and the biological processes that we need to include which are:

1. the survival probabilities/transitions from one stage to the next
2. reproduction

3. the climate as an element affecting the survival of the larvae

4. density dependence as a variable affecting egg survival

With all this information, we can go ahead and

1. write down the equations together with the life cycle of the insects
2. create the desired output: population sizes through time and a plot

The Pseudocode:

1. set initial population parameters: initial number of eggs, simulation time (m), and
the values of the probabilities according to the equations written in the life-cycle

2. create an empty vector to store results, namely p_ size

3. for each time step t

1.

W

N Ot

9.
10.
11.

individual eggs can survive to become larvae as a Bernoulli trial with probability
pl, which includes density dependence. A Bernoulli trial is a random experiment
that can return either success (1) or failure (0)
surviving eggs become larvae. Eggs that die are removed from the population
Larvae survive to pupae with probability p2. This probability is not fixed, but it
is a function of the average temperature.
Surviving larvae become pupae, dead larvae are removed
Pupae survive to become adults with probability p3.
Surviving pupae become adults, dead adults are removed
if the number of adults is zero,
e quit the program with an error telling the population went extinct after t
time steps
else if the number of adults size is > 0,
» save the population size and let adults reproduce and lay eggs according to
a poisson distribution
then go back to step 4
repeat from step 4 to 10
when t equals m the simulation terminates and returns the population sizes

The words in green are operative verbs or actions. We can call them functions in a program-
ming language.

The words in red are common key-words used in many programming languages. They
represent forks in the programme, as they determine which different action will be applied.
Each decision is based on the answer to a question. The answer to an if/else statement is a
Boolean expression (True or False).

5 R Course 2019, LU7

2.3 An example: the life cycle of Boloria eunomia 2 PSEUDOCODE

The words in blue introduce a cycle, a loop. The word for is also a common key-word as
you have already learned in the learning unit on loops

The corresponding real code for Boloria eunomia is written below. At the end of the script,
you will see a plot representing variations in the total number of adults through time in the
three scenarios: (1) current climate, (2) +1.5°C increase in global temperatures, and (3)
+2°C increase in global temperatures.

Please, note that the script is likely too advanced for you at this stage. It is only meant to
be used as a reference. Do not worry if there are some lines that you do not understand!

survival probabilities can be modelled with a logit transformation
logit <- function(x) y = exp(x) / (1 + exp(x))

the function returns the population size of adult butterflies at
each time step
boloria_dyn <- function(
initial _p_size = 1000, # initial number of eggs #<<
simulation_time = 550, # total simulation time
Temp = 0, # current temperature difference experienced by the species
pl = 0.74, # probability of transitioning from egg to larva
DD = -0.0001, # parameter of denstity dependence in egg surival
iT = 0.1, # intercept of the stage transition from larva to pupa
sT = -0.3, # slope for avg temperature of the transition from larva to pupa
p3 = 0.45, # stage transition from pupa to adult
lambda = 10 # reproduction, lambda of poisson distribution
At
create an empty wector to store results, p_size
p_size <- rep(NA, simulation_time)
eggs <- initial p_size
for (t in 1:simulation_time){
individual eggs can survive to become larvae as a bernoulli trial

with probability pl

surviving individuals become larvae

pel = logit(pl + DD * eggs)

larvae <- sum(rbinom(eggs, 1, pel))

surviving larvae become pupae

tmp = iT + sT * Temp

p2 = logit (tmp)

pupae <- sum(rbinom(larvae, 1, p2))

adults <- sum(rbinom(pupae,l, p3))

calculate the mnumber of adults and store it

p_size[t] <- adults

if(p_size[t] <= 0){
1f the population goes extinct interrupt the computation
pasteO(" population went extinct at time ", t)

6 R Course 2019, LU7

2.3 An example: the life cycle of Boloria eunomia 2 PSEUDOCODE

return(list(p_size = p_sizel[l:t]))
} else {
Adults reproduce and lay eggs according to a poisson distribution
eggs <- sum(rpois(adults, lambda))
}
+
return(list(p_size = p_size[1l:t]))
+

generate population size of Boloria eunomia for three different climate scenarios
current climate

res <- boloria_dyn()

1.5 C raise in temperature

resT15 <- boloria_dyn(Temp = 1.5)

2 C raise in temperature

resT2 <- boloria_dyn(Temp = 2)

Compare the scenarios
plot(y = res$p_size, x = 1l:length(res$p_size), type= "1", ylim = c(-13, 1200),
ylab = "total number of adults", xlab = "time")
lines(y = resT15$p_size, x = l:length(resT15$p_size), type= "1", col = "green")
lines(y = resT2$p_size, x = 1l:length(resT2$p_size), type= "1", col = "pink")
legend (0, 275, col = c("black", "green", "pink"), lwd = c(1, 1, 1), legend =
c("current climate", "1.5C scenario", "2C scenario"), box.col = "white")

1000

total number of adults
00
|

o
Q 1 ! — current climate
—— 1.5C scenario
© | 2C Iscenario | | |
0 100 200 300 400 500

time

7 R Course 2019, LU7

3 WRITING FUNCTIONS IN R

3 Writing functions in R

3.1 What is a function?

Q | BONUS: Definition |

A function is a unit of code that takes an input, executes actions related to the input
and from that generates an output.

We have already used functions before! The function

mean(c(2,3))

[1] 2.5

takes the input, which in this case is a vector consisting of the integers 2 and 3, executes its
action by calculating the mean of the input and returns it.

R contains many built-in functions, such as mean(), plot(), read.csv(), that can be used
right away. These functions are generally refered to as base R functions

In this lecture, we will learn how to write our own functions.

3.2 Reasons to write functions

<y |BONUS: Tip

By writing functions we improve the:
» Reusability
o Abstraction
« Readability

of our code

Why would we want to write functions in the first place? As a general rule, we should think
about writing a function as soon as we use the same code fragment more than once, and
these are the main reasons why:

« Reusability: Once we have written our function, we can use it over and over again.
Although it might be additional work in the beginning, it will save a lot of time in the
long run. Just think about it: How much additional work would be necessary if there
were no base R function? A lot, that is for sure!

o Abstraction: Writing a function can be difficult. However, once we have done so and
we are sure that the function does what it is meant to do, we don’t need to think about

8 R Course 2019, LU7

3.3 Structure and syntax of a function 3 WRITING FUNCTIONS IN R

the inner works anymore. As with other objects in life like telephones or the internet,
we can just use it and trust that it works!

« Readability: A more extended script without functions would be terrible to read!
Absolutely terrible! Imagine a world without functions in which we want to calculate
the mean of a numeric vector x without using functions. We could use a for loop like
in the example below. The code is unnecessarily long and hard to read when compared
with the base R function mean (x).

given a vector z
x <= c(1, 2, 5)

manually calculate the mean of = with a for loop
summation <- 0O
len <- 0
for (i in 1:3) {
len <- len + 1
summation <- summation + x[i]
+
myMean <- summation / len
myMean

[1] 2.666667

calculate the mean of = with the R base function mean()
mean (x)

[1] 2.666667

Because there isn’t a function for everything in R, we have to help ourselves and write
functions ourselves. Below it is explained how to do it.

3.3 Structure and syntax of a function

Q BONUS: Syntax

Body ~ Output

Argument

A function consists of three parts.
o the argument: input that the function processes
o the body: the main part of the function in which it does its operations
o the output: what the function is returning when called

The syntax of a function is self-explanatory and has to be precisely followed.

9 R Course 2019, LU7

3.3 Structure and syntax of a function 3 WRITING FUNCTIONS IN R

myFunction <- function(arguments) {
body
return(output)

}

3.3.1 The argument

What do we want the function to operate on? This is the question we have to ask when we
decide what the argument should be. Arguments can be often classified in:

o Data arguments which supply the data to compute on
e Detail arguments which control the details of how the computation is done.

A natural (and very stupid) function with one data argument would be

plusThree <- function(x) {
y <-x + 3
return(y)

}
plusThree(x = 3)

[1] 6

Sometimes, we want to write functions in which some of the parameters are optional. We
want to be able to adjust them, but if we do not have a specific idea on what the parameter
should be, we want to use a default value. This is possible by setting them up with default
values in the argument. We can then either call the function with only a value for x (in
which case y is set to 3 in the example below) or both values for x and y.

plusThreeOrOther <- function(x, y = 3) {
y<-x+y
return(y)

}

plusThreeOrOther (x

3)

[1] 6
plusThreeOrOther (x

3,y =4)

(11 7
Please note that some functions do not need any argument. We can also write functions

without:

printOne <- function() {
print ("One!")

}

printOne ()

10 R Course 2019, LU7

3.3 Structure and syntax of a function 3 WRITING FUNCTIONS IN R

[1] "One!"

Functions without arguments are rare, though. Either they always operate the same, which
might be necessary in some cases. Or, which is much worse, they operate on global variables.
More on this topic later on.

3.3.2 The body

The body of a function is probably the most important part and for sure the most challenging
part to design. In the body, the function has to execute operations to get from the input to
the desired output. In functions, we can use all operations that we would also apply outside
of a function, including loops and if/else statements.

The body of the function can be visualized calling the function name.

plusThree <- function(x) {
y<-x + 3
return(y)

+
plusThree

function(x) {
#H y<-x+3
return(y)
}

3.3.3 The output

There are two different types of output.

One type is the output that is returned when a function is called. We can explicitly set
this with the return() base R function. It is not mandatory to use‘return(), but it is
recommended. If there is noreturn()“ base R function, our function will return the last
evaluated expression (i.e., the last line of the body).

plusThree <- function(x) {
y <-x + 3
return(y)
}
the function above is equivalent to:
plusThree <- function(x) {
y<-x + 3
}
value <- plusThree(x = 3)
print(value)

11 R Course 2019, LU7

3.3 Structure and syntax of a function 3 WRITING FUNCTIONS IN R

[1] 6

Multiple objects can be combined in a list to be returned simultaneously.

multipleCalculations <- function(x) {
timesTwo <- 2 * x
squared <- x * X
returnlist <- list("timesTwo" = timesTwo,'"squared" = squared)
return(returnlList)
}
values <- multipleCalculations(x = 3)
print(values)

$timesTwo
[1] 6

##

$squared
[1] 9

each element of the list can be accesses separately.
For example, access the timesTwo output with
values$timesTwo

[1] 6

or with
values[[1]]

[1] 6

In addition to the output explicitly returned by a function with return(), there can be
additional output. A common example is output that is printed to the screen using the
print function and output that is generated and saved to a file without returning it. We
call this type of output a side effect of the function.

sideEffect <- function(x) {
print(x~2)
return(x)

}
this call will print z72

x <- sideEffect(3)

[1] 9

and then we can see the returned output by calling the object
X

[1] 3

12 R Course 2019, LU7

3.4 Error messages 3 WRITING FUNCTIONS IN R

3.4 Error messages

It’s crucial to integrate informative error messages instead of letting a function return incor-
rect or surprising results.

Say we want to write a function to calculate the growth of a population of rabbits, which
follows the exponential growth model (Lack 1954): n, = ng x rf, where n, is the population
size at time t, ng is the initial population size, and r is the net reproductive rate which
represents the number of offspring produced on average by an individual.

The population of rabbit is exemplified in the following plot:
Exponential Growth

o
o _]
o
o]
o
o _|
o
<

%)

=

2 o

© 8—

X &

—

o

S

3
o

e o _|

s O

ZN
o
o _]
o
—
O_

Time
A first good guess would be:
expGrowth <- function(tmax, n0, r) {
nt <- rep(0, tmax) # create an empty vector to store results
nt[1] <- n0
nt[2:tmax] <- n0 * r~(2:tmax)
return (nt)

}
expGrowth (20, 2, -1.1)

[1] 2.000000 2.420000 -2.662000 2.928200 -3.221020 3.543122

13 R Course 2019, LU7

3.4 Error messages 3 WRITING FUNCTIONS IN R

[7] -3.897434 4.287178 -4.715895 5.187485 -5.706233 6.276857
[13] -6.904542 7.594997 -8.354496 9.189946 -10.108941 11.119835
[19] -12.231818 13.455000

expGrowth (20, -5, 1.6)

[1] -5.00000 -12.80000 -20.48000 -32.76800 -52.42880
[6] -83.88608 -134.21773 -214.74836 -343.59738 -549.75581
[11] -879.60930 -1407.37488 -2251.79981 -3602.87970 -5764.60752
[16] -9223.37204 -14757.39526 -23611.83241 -37778.93186 -60446.29098

The produced output is incorrect. The problem here is that the arguments are parameters
that take unrealistic values. Thus, the function is not working as intended. This is called a
bug.

Q |BONUS: Definition

A bug is an error, flaw, failure or fault that causes a programme to produce an incorrect
or unexpected result, or to behave in unintended ways. We learnt about bugs in LU5
and we will learn how to deal with bugs further in the LU10.

For example, the initial population size has to be bigger than one (at least two individuals
in the initial population). We can solve the problem quickly by checking whether the value
of n0 is bigger than 1. If not, we want to exit the function. We can do so by throwing an
error message condition is not met by using the stop() base R function.

expGrowth <- function(tmax, n0, r) {
if(n0 <= 1){
1f the condition applies, print error message
stop("Error: Initial population size must be bigger than 1")

b
nt <- rep(0, tmax) # create an empty vector to store results
nt[1] <- n0

nt[2:tmax] <- n0 * r~(2:tmax)
return (nt)

}
expGrowth (20, 2, -1.1)

[1] 2.000000 2.420000 -2.662000 2.928200 -3.221020 3.543122
[7] -3.897434 4.287178 -4.715895 5.187485 -5.706233 6.276857
[13] -6.904542 7.594997 -8.354496 9.189946 -10.108941 11.119835
[19] -12.231818 13.455000

expGrowth (20, -5, 1.6)

Error in expGrowth(20, -5, 1.6): Error: Initial population size must be bigger than 1

Similar to the stop() function, there is the stopifnot() base R function which, as we

14 R Course 2019, LU7

3.4 Error messages 3 WRITING FUNCTIONS IN R

might have expected, works exactly the opposite way around: If a condition is not met, the
function will be stopped. The advantage here is that stopifnot() saves one line of code
(namely the if statement), but we can’t specify our own error messages. Thus, it is better to
use stop() in most cases.

expGrowth <- function(tmax, n0, r) {
nt <- rep(0, tmax) # create an empty vector to store results
stopifnot(n0 > 1) # if the condition applies, print error message
nt <- rep(0, tmax) # create an empty vector to store results
nt[1] <- no0
nt[2:tmax] <- n0 * r~(2:tmax)
return (nt)

+

expGrowth (20, 2, -1.1)

[1] 2.000000 2.420000 -2.662000 2.928200 -3.221020 3.543122
[7] -3.897434 4.287178 -4.715895 5.187485 -5.706233 6.276857
[13] -6.904542 7.594997 -8.354496 9.189946 -10.108941 11.119835
[19] -12.231818 13.455000

expGrowth (20, -5, 1.6)

Error in expGrowth(20, -5, 1.6): n0 > 1 is not TRUE

We can warn the user if he/she attempts to use argument values that we suspect to be
incorrect by issuing a warning using the warning() base R function. Note that in this case,
the rest of the function will still be executed. For example, we expect the values of r to be
positive.

o If the exponent is larger than 0, we do the same as we did before.

expGrowth <- function(tmax, n0, r) {
if(n0 <= 1) stop("Error: Initial population size must be > 1")
if (r <= 0) warning("Warning: the net growth rate is negative!")
nt <- rep(0, tmax) # create an empty vector to store results
nt[1] <- n0
nt[2:tmax] <- n0 * r~(2:tmax)
return (nt)

}

expGrowth (20, 2, -1.1)

Warning in expGrowth(20, 2, -1.1): Warning: the net growth rate is
negative!

[1] 2.000000 2.420000 -2.662000 2.928200 -3.221020 3.543122
[7] -3.897434 4.287178 -4.715895 5.187485 -5.706233 6.276857
[13] -6.904542 7.594997 -8.354496 9.189946 -10.108941 11.119835
[19] -12.231818 13.455000

15 R Course 2019, LU7

3.5 Global and local variables 3 WRITING FUNCTIONS IN R

3.5 Global and local variables

We shortly talked about global variables before, but here we will go into more detail.

Q |BONUS: Definition

Global variables are those variables that exist inside the main part of your R script.
We can understand the concept better when we know the second type of variables: Local
variables. These are variables that are created inside functions. They only exist inside
the function, and once the function is finished, the variables are deleted.

So far, so good. There is a problem, though, which occurs when we use or modify global
variables inside a function. To illustrate the problem, we go back to an example from a
previous section in which a value of three was added to a variable. Here, however, we
remove the arguments of the function.

plusThree <- function() {
return(x + 3)

}

x <=5

value <- plusThree()

print (value)

[1] 8

x <- 10
value <- plusThree()
print (value)

[1] 13

The problem here is that the output of the function depends on the rest of our program,
outside of the function call. If we modify the value of x, the output of the function changes,
too. More importantly, other people that try to use our function might get an error at
execution if the variable x might not be defined in their global environment at all. An
input that is not part of the arguments of the function is called hidden input or hidden
argument.

3.6 Calling functions
Calling a custom function works the same as calling a pre-defined function. There are three
different options to set the arguments of a function:

« By position: When we write a function, we name the different arguments in a specific
order. When we call the function, we then can set the arguments in the same order,
without anything besides the values that we intend the arguments to receive. This is

16 R Course 2019, LU7

4 COOKING RECIPE: HOW TO WRITE A FUNCTION?

the easiest and quickest way to do it, but also the most dangerous as you may have
misremembered the order of the arguments. In that cae arguments will receive wrong
values.

By full name: Alternatively, we can set the arguments by their full name. Thus, we
explicitly write out that argument x = 3. By doing so, we can neglect the order of
the arguments. This is the safest method since we have to think explicitly about the
direct association between arguments and values.

By partial name: An uncommon method which we mention here for the sake of
completeness is setting arguments by partial name. In case we only have one variable
which starts with a specific letter, we can use this letter instead of the full name,
e.g. using b = 3 instead of base = 3. As this does not have any significant advantages
over setting arguments by their full name, we should not use this method in practice.

Below, see examples for calling the function expGrowth() with all three different methods.

expGrowth(20, 10, 1.4) # setting arguments by position

##
#i#
#i#
#i#

[1] 10.00000 19.60000 27.44000 38.41600 53.78240 75.29536
[7] 105.41350 147.57891 206.61047 289.25465 404.95652 566.93912

[13] 793.71477 1111.20068 1555.68096 2177.95334 3049.13467 4268.78854
[19] 5976.30396 8366.82554

expGrowth(tmax = 20, n0 = 10, r = 1.4) # setting arguments by full name

#i#
##
#it
#i#

[1] 10.00000 19.60000 27.44000 38.41600 53.78240 75.29536
[7] 105.41350 147.57891 206.61047 289.25465 404.95652 566.93912

[13] 793.71477 1111.20068 1555.68096 2177.95334 3049.13467 4268.78854
[19] 5976.30396 8366.82554

expGrowth(t = 20, n = 10, r = 1.4) # setting arguments by partial name

##
#i#
#it
#i#

4

[1] 10.00000 19.60000 27.44000 38.41600 53.78240 75.29536
[7] 105.41350 147.57891 206.61047 289.25465 404.95652 566.93912

[13] 793.71477 1111.20068 1555.68096 2177.95334 3049.13467 4268.78854
[19] 5976.30396 8366.82554

Cooking recipe: How to write a function?

Follow these steps when you want to write a function:

o Think about what you need to do: You will have to think about your function in any

case, so it is best to do it before you start. At this point, it does not have to be too
formalized. In particular, ask the following questions:

— What is the aim of the function?
— What is the input?

17 R Course 2019, LU7

5 BONUS FOR THE BRAIN: EFFICIENCY AND TIPS

— What is the output?
— How to get from the input to the output?

o Write down the pseudocode: Now is the time to concretize and sort your thoughts
from the previous step. Try to be as clear as possible.

o Start with a simpler version of your problem: Identify the key components and the
details of your problem. Then remove the details for now; you can still add those later
on. In addition, you need to be able to check whether your solution will be correct. So
make sure that you know the right answer to your problem.

o Write a script that solves your problem: Don’t think of functions or anything yet. Just
answer the problem correctly by comparing it to what you know is the correct solution.

o Rewrite your script to use variables: Set all the variables in the first few lines of the
code. After that, you should only use these variables for all operations. Do not set
values in-between.

o Clean-up your example: Which lines are unnecessary? Which ones would be better of
at different positions? Try to improve the readability and cleanness of your code. If
it already a mess now, it will not get nicer later on. Make sure that your script still
works from time to time!

o Turn your script into a function: You started with the aim of creating a function. Now
is the time to go there. Instead of setting the variables at the beginning of the script,
turn them into arguments of your function. Then test your function and make sure
that it works correctly.

e Include the details: You sparred all the details in the beginning. Work them in one
by one, regularly checking that your function works correctly. An excellent way to do
this is by looking at exceptional cases of your problem; your function should ideally
work for all of them.

5 Bonus for the brain: Efficiency and tips

This section is meant to propose extra information we thought will come handy for you in
the future. We invite you to do/think about them after the course has finished and you have
started a research project with the help of R.

Some tips:

o An useful function solves a problem correctly, and it’s understandable to others.

o Start writing a function by thinking about the problem, the goal and write down the
pseudocode!

« Give function and objects meaningful names! Be consistent! There is no right or wrong
in this as long as your convention is clear. As a starting point, it’s nice to use verbs
for function names and nouns for argument names.

18 R Course 2019, LU7

5.1 Functions can be arguments toBONUS FOR THE BRAIN: EFFICIENCY AND TIPS

» Sometimes functions can take as arguments objects of different types (e.g., a matrix
and a vector). If the output type depends on the input type, then the output type can
change. Be careful as this can cause issues!

5.1 Functions can be arguments too

We can call a function as an argument in another function.

summarize_col applies a function fun to a data frame, df
summarize col <- function(df, fun){
output <- rep(0, length(df))
for (i in 1:length(df)){
output [i] <- fun(df[[i]])
}
return(output)

}

df <- data.frame(A = 1:20, B = (1:20)73)

summarize_col(df, fun = median)
[1] 10.5 1165.5
summarize_col(df, fun = mean)
[1] 10.5 2205.0
summarize_col(df, fun = sd)

[1] 5.91608 2504.89321

5.2 Calling functions in the body

Another robust operation is to call other functions from within the body of a function. We
have done that in many functions already! For example, look back at the summarize col()
above: from within summarize_col(), we called the length() function. We can do the same
thing with our own functions! This is a mighty operation to break down complex functions
to smaller parts!

Recursive functions
A recursive function is a function that calls itself in the body during its execution. Recursive

functions are commonly used to reproduce structures that repeat themselves, such as leaves,
dunes, etc.

19 R Course 2019, LU7

5.2 Calling functions in the body BONUS FOR THE BRAIN: EFFICIENCY AND TIPS

the following code plots a leaf

turtle <- function(vec,dir,l,colour){
vec2 <- c(vec[1l] + 1 * cos(dir), vec[2] + 1 * sin(dir))
lines(c(vec[1], vec2[1]), c(vec[2], vec2[2]), type="1", col=colour)
return(vec?2)

}

linedraw 1s a recursive function that calls itself

linedraw <- function(vec,direction,len,n,dir2){

if (n >0){
if (n >6){colour = "brown"}
elseq{
if (n > 2){colour = "dark green'"}
else{colour = "green"}
}

vec <- turtle(vec, direction, len, colour)

linedraw(vec, direction + dir2 * pi / 4, len * 1.12 / 2, n - 1, dir2)
vec <- turtle(vec, direction - pi / 10, len, colour)

linedraw(vec, direction - dir2 * pi / 4, len * 1.12 / 3, n - 1, -dir2)
vec <- turtle(vec, direction, len, colour)

linedraw(vec, direction, len * 1.12 / 2, n - 1, dir2)

}
+
plot(c(0, 0), c(0, 0), type = "1", col = "green", ylim = c(-5, 5), xlim = c(O,
10), xlab = "", ylab = "")
linedraw(c(5, -5), pi / 2 + pi / 20, 1.45, 10, 1)
< -
9
N — ¥, % SE
= sl
o) € e, B
% M Ryt ot ?
g ¥ =t .\:";. . T
N = == 3 ijﬁv o=
I — # S
< \2
|
[[[[[[
0 2 4 6 8 10

When we write a recursive function, the first thing to think about is the exit condition. At
some point, we need the function to stop calling itself. If this condition is never met or met
too late, our program will either run forever or crash.

20 R Course 2019, LU7

5.3 Apply user-defined functionls BONUS FOR THE BRAIN: EFFICIENCY AND TIPS

5.3 Apply user-defined functions

In the LU6 we learnt to use the base R function apply (), sapply (), tapply () and lapply ()
to apply a function to different R objects. As is the case for almost everything, these functions
are not limited to objects but can be applied to user-defined functions, too (see the example
below).

the function expGrowth was defined in the beginning of this lecture
sapply applies the function expGrowth and returns a vector
sapply(c(0.9, 1.1, 1.3), FUN = expGrowth, n0 = 2, tmax = 20)

#t [,1] [,2] [,3]
[1,] 2.0000000 2.000000 2.000000
[2,] 1.6200000 2.420000 3.380000
[3,] 1.4580000 2.662000 4.394000
[4,] 1.3122000 2.928200 5.712200
[5,] 1.1809800 3.221020 7.425860
[6,] 1.0628820 3.543122 9.653618
[7,] 0.9565938 3.897434 12.549703
[8,] 0.8609344 4.287178 16.314614
[9,] 0.7748410 4.715895 21.208999
[10,] 0.6973569 5.187485 27.571698
[11,] 0.6276212 5.706233 35.843208
[12,] 0.5648591 6.276857 46.596170
[13,] 0.5083732 6.904542 60.575021
[14,] 0.4575358 7.594997 78.747528
[15,] 0.4117823 8.354496 102.371786
[16,] 0.3706040 9.189946 133.083322
[17,] 0.3335436 10.108941 173.008318
[18,] 0.3001893 11.119835 224.910814
[19,] 0.2701703 12.231818 292.384058
[20,] 0.2431533 13.455000 380.099275

5.4 Writing stable functions

R can be used both to do interactive analysis and to do programming.

When working interactively, we want to iterate as quickly as possible and check each result
as we go. When we do programming, we have to be more careful because the same code
can be reused with different inputs and on different environments. We have to be careful
because unexpected errors might arise.

For example, unstable type functions return different types of objects. e.g., with an input
vector, they return a vector, but with an input data frame, they return a data frame. If we
are working interactively, we know what input object we are passing. This might be less

21 R Course 2019, LU7

5.4 Writing stable functions 5 BONUS FOR THE BRAIN: EFFICIENCY AND TIPS

obvious within a long program. In programming, it’s better to avoid writing functions of
inconsistent type. A way to achieve that is to write error messages and stop the execution
if an object is of a different type than expected.

Finally, we have to be aware that R has global options which can affect the operation of
certain functions (see options()). These global options can affect the behavior of our
function and thus cause issues when you move from one computer to another. For example,
the option stringsAsFactors = TRUE sets R to treat strings as factors in a data frame.

22 R Course 2019, LU7

6 THE INTERACTIVE PART OF THE CLASS

6 The interactive part of the class

Basics of functions

#remember the syntaz of a function

my_fun <-function(argsl, args2) {
body

+

division function

division <- function(a, b){ # b takes a default value
return(a / b)

}

you can can call the function diviston in multiple ways:
division(1l, 2)

[1] 0.5

division(a =1, b = 2)

[1] 0.5
division(20, 0)

[1] Inf
division(0, 0)

[1] NaN

default values for wvariables

division <- function(a, b = 10){ # b takes a default wvalue
return(a / b)

+

division(1)

[1] 0.1

division(1l, 10) #both are the same now

[1] 0.1

Logistic growth is a popular population model for populations that are limited by a carrying
capacity. According to the model, the population P at time ¢ is

_ L
P<t> T l+4exp(—kt)’

with L being the carrying capacity and k being the reproduction rate.

23 R Course 2019, LU7

6 THE INTERACTIVE PART OF THE CLASS

Logistic Growth

Carrying capacity

Population size

Time

Figure 3 Depiction of logistic growth. Image credit: “Environmental limits to population
growth: Figure 1,” by OpenStax College, Biology

Development of functions

discuss with the students how to approach this and do it together
logisticVl <- function(t, L, k) {

v <- exp(-k * t)

y <- L/ +)

return (y)

}

k should be positive in logistic growth
we can ensure it ts by using an tf statement

logisticV2 <- function(t, L, k) {
if (k < 0) {
stop("error: k has to be positive")
} else {
v <- exp(-k * t)
y <~ L/(1 + v)
return (y)
}
}

logisticV2(t = 1, L = 5, k = -1)

Error in logisticV2(t = 1, L =5, k = -1): error: k has to be positive

we want to wvisualize logistic growth
first step is to calculate the values of the function for different times t

evalLogistic <- function(steps = 100, minV = 0, maxV = 1, L, k) {

24 R Course 2019, LU7

https://cnx.org/contents/GFy_h8cu@10.12:eeuvGg4a@4/Environmental-Limits-to-Population-Growth
https://cnx.org/contents/GFy_h8cu@10.12:eeuvGg4a@4/Environmental-Limits-to-Population-Growth

6 THE INTERACTIVE PART OF THE CLASS

x <- rep(0, steps)
y <- rep(0, steps)
for (step in O:steps) {
xVal <- (maxV - minV) * step/steps + minV
x[step+1] <- xVal
y[step+1l] <- logisticV2(t = xVal, L = L, k = k)
}
return(list = c(x = x, y = y))

calling the function gives z— and y-values of logistic growth
we can now call the following function to plot <t

plotLogistic <- function(steps = 100, minV = 0, maxV = 1, t, L, k) {
values <- evallogistic(steps steps, minV = minV, maxV = maxV, L = L, k = k)
plot(values[1: (steps+1)],values[(steps+2): ((steps+1)#2)], type="1",col="blue", ylab="I

b

using a high number of steps gives better accuracy but is a little bit slower

plotLogistic(steps = 10000, min = 0, max = 1, L =1, k = 1)

o
[__
o
Q 7o)
N
® g 7]
c
je)
s 3
3 o
(@]
D_LO
LO._
o
3
) I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Time

if we "zoom out" the shape of the function becomes wvisible

plotLogistic(steps = 10000, min = -5, max = 5, L = 1, k = 1)

25 R Course 2019, LU7

6 THE INTERACTIVE PART OF THE CLASS

Population Size

1.0

06 0.8

0.4

0.2

0.0

26 R Course 2019, LU7

7 EXERCISES

7 Exercises

7.1 (Difficulty: easy)

The function circle_ fun() calculates the circumference and the area of a circle given the
value of the diameter. Run the code provided below. Modify the code to apply the function
to a vector of diameters: c¢(1, 3.5, 0.1). Extract the values of the circumference and the area
separately.

circle fun <- function(diameter = 1.2){
circumference = pi * diameter
area = pi * (diameter / 2) ~ 2
return(list(circumference = circumference, area = area))

}

circle_fun()

$circumference
[1] 3.769911
##

$area

[1] 1.130973

7.2 (Difficulty: easy)

Measuring the height of trees with a meter is very difficult. To escape the difficulties that
come with climbing, the height is normally estimated from measurements that can be carried
out on the ground.

7.2.1 Part1l

Complete the given function to estimate the height of a tree. Our default setting is to observe
trees from a distance of 40 m. We measure the angle to the top, €, to estimate the height.

R uses radians instead of degrees to estimate the tangent. Therefore, we need to convert the
degrees into radiants by multiplying the value of the angle by = (which is called pi in R)
and divide it by 180. This has been done for you in the exercise.

Test the function for an angle of § = 37°.
Hint: Remember that height = distance x tan(6).

calculate the hetght of a tree based on the distance and the angle
as measured by an observer on the ground. The formula is:
treeHeight <- function(angle, distance = __){

height <- ___ * (___ *pi/ 180)

27 R Course 2019, LU7

7.3 (Difficulty: easy) 7 EXERCISES

distance

Figure 4 Representation on how to calculate the height of a tree based on observed angle
and distance of the observer.

return(__)

}
treeHeight ()
7.2.2 Part 2

We have deviated from our default setting and observed a tree from a distance of 60 m with
an angle of 10° to the top. Apply the treeHeight () function to this setting to calculate the
height?

7.3 (Difficulty: easy)
7.3.1 Part1l

Complete the following function that converts measurements taken in miles to kilometers.
The formula is kilometers = miles x 1.609. Then apply the function to the values 2, 6, and
25 miles.

convert miles to kilometers

convertMilesToKMeters <- function(= 10){
return()

, T

28 R Course 2019, LU7

7.4 (Difficulty: intermediate) 7 EXERCISES

7.3.2 Part 2

Write a similar function that converts kilometers to miles, called convertKMeter-
sToMiles() and apply it to the values 3, 9.6, and 40 kilometers.

7.4 (Difficulty: intermediate)

The Ricker model is a discrete population model that mimics the number of individuals in
a population over multiple generations. The formula of the model is:

Nt+1 = Nt X 67'(17%)

where N1 and N, are respectively the population sizes at time ¢+ 1 and ¢, k is the carrying
capacity of the environment, and r is the intrinsic growth rate. The model is often used to
predict the number of fish in a fishery.

the functions calculates the expected population size after the n times.
the calculation is based on the ricker model, which takes as arguments:
r = intrinsic growth rate
k = carrying capacity
Nt = initial population size
ricker <- function(r, k, Nt, times){

Ntl <- c(Nt, rep(0, times - 1))

for(i in 2:times){
Nt1[i] <= Nt1[i - 1] * exp(r * (1 - (Nt1[i - 11/k)))
+
return(Nt1)
}
ricker(2, 1000, 1500, 30)

[1] 1500.0000 551.8192 1352.3270 668.4276 1297.3420 715.7914 1263.7086
[8] 745.7488 1240.0304 767.2635 1222.0722 783.8038 1207.7943 797.0859
[15] 1196.0631 808.0828 1186.1866 817.3976 1177.7138 825.4286 1170.3353
[22] 832.4515 1163.8305 838.6647 1158.0369 844.2154 1152.8321 849.2153
[29] 1148.1212 853.7511

7.4.1 Partl

The Ricker model output might be considered unrealistic because the population size is
expressed as a real number with decimal degrees (and we know that, for example, 0.3 of an
individual does not exist in nature). Change the function so that the calculations will be
computed in integers. The round() base R function can be used to address this weakness.
Check the help file with ?round ().

29 R Course 2019, LU7

7.5 (Difficulty: intermediate) 7 EXERCISES

Moreover, the argument values are also bounded. For example:

e 1 is bigger than 0
e k, Nt and times are all integers and bigger than 0.

Introduce some checks within the function body to make sure the user set the arguments
correctly and stop the execution if the conditions do not apply. Note that you can easily
check if a number is an integer with the %7 operator. Try for example to type in your console
47%2 and 5%%2. Test your implementation by calling the function with the same arguments
as above.

7.4.2 Part 2

Improve the model further to stop the function when the population goes extinct. We know
that the population goes extinct for the set of arguments: r = 2, k£ = 10, Nt = 1500, and
times = 30. Test the improved function with these arguments.

7.5 (Difficulty: intermediate)

The survival of lambs to adult is affected by the food availability (which is measured in ton
of food per km?) in the area where they are born. The more food is available, the higher
the survival probability. In this exercise, we want to write a function which calculates the
survival probability.

First, we need to decide on a model to estimate the survival probability. We know that a
probability is by definition a number between 0 and 1. The logistic function is an excellent
approach to model the survival probability that dependends on independent variables, such
as food availability. This is because the logistic transformation converts arbitrary values to
probabilities bounded between 0 and 1, exactly what we want. We want to use the logistic
function to model the survival probability, such that:

exp(int + slope x food)
1 + exp(int + slope x food)

logistic(int + slope x food) =

The integer int and the slope slope are parameters of the function which we have to set
based on previous knowledge. For the lambs, int = —3 and slope = 0.8 are realistic values.
The figure below shows the logistic transformation of the values. On the left-hand side, we
see the values of int 4 slope x food before the transformation and on the right-hand side the
values after the transformation.

30 R Course 2019, LU7

7.6 (Difficulty: hard) 7 EXERCISES

linear logistic transformation
o
S
o _]
™ o)
2 S
E
©
g
T o _| 2 o |
g ° 5 ©
8 3
* o
aé S
w U
+ 97 ©
£
(qV]
N -
o —
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
food availability (ton / km”2) food availability (ton / km”2)

Check wikipedia if you need a refresher on the logistic function.

With all of this in mind, go ahead and write a function that calculates the survival probability
of a lamb from juvenile to adult. Use an intercept of -3 and a slope for food availability of 0.8.
How much does the survival probability change if we double the amount of food available
from 2 ton to 4 ton?

Before writing your function, remember to plan and write down your pseudocode.

7.6 (Difficulty: hard)

We weren’t aware of the most basic R functions (a big mistake to start with, but nothing
we should worry about here) and have written a function which calculates either the mean
and the minimum of a vector x. Set meanFlag to TRUE if you want to calculate the mean of
x, or set minFlag to TRUE if you want to calculate the minimum.

meanMinFunction <- function(x, meanFlag = FALSE, minFlag = TRUE) {
mean <- 0
min <- x[1]
if (meanFlag == TRUE) {
for (i in 1:length(x)) {

31 R Course 2019, LU7

https://en.wikipedia.org/wiki/Logistic_regression

7.6 (Difficulty: hard) 7 EXERCISES

mean <- mean + x[i]

}
mean <- mean/length(x)
return(mean)

} else if (minFlag == TRUE) {
for (i in 1:length(x)) {
if (x[i] < min) {
min <- x[i]
}
}
return(min)
}
+

We are not happy with our result, though. Help us out by adjusting for the following three
weaknesses:

7.6.1 Part1l

When we set both flags to FALSE, we do not get anything from our function. In that case,
we probably did a mistake in the function call which we obviously want to be notified of.
Add a third case to the if/else statement that gives a warning when we call the function with
both flags being FALSE. Test the case with a vector consisting of the values 1, 2 and 3.

7.6.2 Part 2

When we set both flags to TRUE, the function does not return the correct output. It only
returns the mean, not both mean and minimum. Change the if/else structure and include a
fourth case for when both flags are TRUE. Call the function with the same vector as in part
1, but this time set both flags to TRUE.

7.6.3 Part 3

Now the function does what it should do! However, other users might be confused as we did
not include any comments at all which makes it hard to read and understand what is done
here. Add comments to explain the four cases that are covered by the if/else structure. Then
add further comments to indicate which part of code is dedicated to calculate the mean and
which part is dedicated to calculate the minimum.

32 R Course 2019, LU7

7.7 (Difficulty: hard) 7 EXERCISES

7.7 (Difficulty: hard)

We want to calculate the tree density in the city of Nijmegen. The density is defined as the
quotient of the number of trees and the surface area. We don’t have any reliable information
on the surface area of Nijmegen, though. So naturally, we want to estimate it.

An intuitive way to do so is to calculate for each tree the Euclidean distance to the next one.
To intuition goes as follows: If there are lots of trees, then the next tree will be very close. If
there are only a few of them, then the next tree will be far away. In fact, if we had infinitely
many data points, we could calculate the exact tree density from the Euclidean distances of
all trees to their nearest neighbors. We don’t have that but we have a lot of data points in
our tree dataset.

The Euclidean distance is the length of a straight line between the trees 7 and j and is defined
as

dij = /(i — 2;)2 + (i — ;)2
with z and y being the coordinates of the trees The smallest distance for tree ¢ to the next
tree then is

dmin,i = mln(dz,]))

with index j checking for all trees except for i (as this would be the distance from a tree to
itself which is 0 by definition). Finally, we want to average over all smallest distances

davg, min — mean(dmin,i)v

with index ¢ running over all trees. In this exercise, we will write a function that not only
calculates the mean Euclidean distance for the tree dataset but also gives meaningful output.
The function will be developed over multiple exercise parts.

7.7.1 Partl

We already prepared pseudocode for a program that calculates the average of smallest Eu-
clidean distances in our dataset. Read the code, understand it and then color the steps the
way we did in the interactive example (that is: green for actions, red for key-words and blue
for loops). If you don’t know how to color text, simply think about the differences between
the three categories.

1. load the tree dataset
2. create an empty vector d;, to store the smallest distances for all trees
3. for each tree ¢
1. calculate the distances of tree i to all trees j
2. replace the distances of tree i to itself with 10000 (hint: the exact value does not
matter. What matters is that it is larger than the smallest distance)
3. calculate the minimum of the distances using the base R function min()
4. store the smallest distance in dpy;,

33 R Course 2019, LU7

7.7 (Difficulty: hard) 7 EXERCISES

4. calculate dayg, min from dp, using the base R function mean()

7.7.2 Part 2

We translated our pseudocode into a R script that calculates the average of smallest Eu-
clidean distances. Read the script and indicate which steps of the pseudocode correspond to
which line of the R code.

treeDataset <- read.csv(file = "additional material/Nijmegen trees.csv")[1:1000,]
d_min <- replicate(nrow(treeDataset), 0)

x <- treeDataset$x
y <- treeDataset$y

for (i in 1:nrow(treeDataset)) {
d <= sqrt((x[i] - x) * (x[i] - x) + (y[i] - y) * (y[i] - ¥))
d[i] <- 10000
d min[i] <- min(d)

b

d_min_avg <- mean(d_min)
print(d_min_avg)

[1] 20.65624

7.7.3 Part 3

We want to take the next step and analyse the tree density for different sub-parts of Nijmegen.
To do so we can either copy and paste our script, but that would get ugly pretty quickly. To
avoid that, we want to write a function.

As the input of the function, use the x and y coordinates. As output, return the average of
smallest Euclidean distances. To test the function, apply it to the tree dataset. The result
should be the same as in part 2.

7.7.4 Part 4

As the last step, we want to adopt our function to give meaningful output. After all, a single
number without any context does not mean much. To change this, we want to add a print
message which connects: average of smallest Euclidean distances, the unit of measurement
(meters), and the neighborhood of the city it is calculated for. Then, we can quickly compare
the results of different neighborhoods of Nijmegen.

34 R Course 2019, LU7

7.7 (Difficulty: hard) 7 EXERCISES

Adopt the function and apply it to at least three different parts of Nijmegen (which are saved
in the variable wijk) How substantial are the differences? Do they meet your expectations?

35 R Course 2019, LU7

LU 8: Introduction to Simulations in R
With exercises
Luca Santini

l.santini@science.ru.nl

Contents
1 Learning Unit Goal: 1
2 Functions we are going to use 1
3 The basics 2
4 Let’s learn the basic functions 2
4.1 Simulate random values 2
4.2 pfunctions 5
4.3 dfunctions 6
4.4 Sample random values from a vector 6
4.5 Reshuffle a vector 7
4.6 Reproducibility 8
5 Now let’s practice what we learnt 8
5.1 Estimate the probability of an event occurring using a simulation 8
5.2 Create a function that generates a random password 8
5.3 Estimate the distribution of possible population size of a species given a few
information 9
5.4 Simulate the population growth and fluctuations with a given level of exploita-
tion and plot the temporal trend L. 9
5.5 The virtual ecologist approach o000 10

1 Learning Unit Goal:

Learn how to generate random values, sample from objects, solve problems using a simulation.

2 Functions we are going to use

e ‘v’ functions for the normal, binomial, poisson and uniform distributions
o ‘d’ functions for the normal, binomial, poisson and uniform distributions

mailto:l.santini@science.ru.nl

4 LET’S LEARN THE BASIC FUNCTIONS

o ‘p’ functions for the normal, binomial, poisson and uniform distributions
« sample()

« set.seed()

« for loops

» plotting functions

3 The basics

A simulation is the use of a computer to represent the dynamic of a system.

o Simulations are used to study the dynamic behavior of objects or systems in response
to conditions that cannot be easily or safely applied in real life.

« Simulations generally consists of algorithms with random variables

» Basic things to learn to develop simulations are: random number generations, repro-

ducibility, statistical distributions, and algorithms.

4 Let’s learn the basic functions

4.1 Simulate random values

#unt form distribution

#we only sample 10 values, the distribution doesn't look really uniform
x<-runif (n=10, min=0, max=1)

hist (x)

Histogram of x

Frequency
2
I

I I I I I I
00 02 04 06 08 1.0

X

2 learning unit 8

4.1 Simulate random values 4 LET’S LEARN THE BASIC FUNCTIONS

#1f we increase the sample the distribution looks better
x<-runif (n=1000, min=0, max=1)
hist (x)

Histogram of x

o _
AN — N
—
- | L
o o _| -
C o0 I
()]
>]
o
o _|
L <
o_

I I I I I I
00 02 04 06 08 1.0

X

#normal distribution
x<-rnorm(n=1000, mean=50, sd=10)
hist(x)

Histogram of x

Q —

o_

(a\] —
>.| —_— —
&)

c

v O

S O —

o 4

)

S

LL o _|
e}
O_

20 40 60 80

#binomial distribution
x<-rbinom(n=1000, size=1, prob=0.3)
hist(x)

3 learning unit 8

4.1 Simulate random values 4 LET’S LEARN THE BASIC FUNCTIONS

Histogram of x

o
O_
©
. -
5 S
5 <
s <
o
S
(@
I'I'C\I
O_

I I I I I I
00 02 04 06 08 10

#poisson distribution
x<-rpois(n=1000, lambda=10)
hist(x)

Histogram of x

o
D —
N
& o |
S O -
) —
S
=3]
)
S
L o5 |
T}
o_

#Generate random wvariables

X<-runif (150, 10, 200) #we generate a random vartiable

#we use the linear model formula a+z*b to generate a second variable that depends on t
#and add an error to the relationship sampling from a normal distribution

Y<- 5 + X * 0.3 + rnorm(length(X), 0, 10)

plot(X, Y)

4 learning unit 8

4.2 p functions 4 LET’S LEARN THE BASIC FUNCTIONS

Y
0O 20 40 60 80
I

4.2 p functions

Prefixing your function with p calls up the cumulative distribution function (CDF).

Given a number or list of numbers, the CDF function allows us to compute the probability
that a random number will be less that that number

#What is the probability that a random number from a mormal distribution with
#mean O and sd 1 is less than 07
pnorm (95, mean=100, sd=5)

[1] 0.1586553

#We can manually test ©f this ts true by sampling from the distribution
sampledValues<-rnorm(10000, mean=100, sd=5)
table(sampledValues<95) /10000

##
FALSE TRUE
0.8389 0.1611

#We can set the argument lower.tail=FALSE to obtain the opposite
#(probability of a random number to be larger than)
pnorm(95, 100, 5, lower.tail = FALSE)

[1] 0.8413447

#We have an exam with 10 questions, each having 5 possible answers.

#We know mothing and answer randomly.

#What is the probability that at least 3 questions are answered correctly?
pbinom(3, size=10, p=1/5, lower.tail=FALSE)

[1] 0.1208739

) learning unit 8

4.3 d functions 4 LET’S LEARN THE BASIC FUNCTIONS

#0n average, 5 badgers cross a road every day.

#What is the probability of having 2 or less badgers crossing the road in
#a particular day?

dpois(2, lambda=5)

[1] 0.08422434

4.3 d functions

The d command is used to calculate the probability density at given point from the proba-
bility density function (PDF). In a PDF all probabilities sum up to one.

#We have an exam with 10 questions, each having 5 possible answers.

#We know mothing and answer randomly. What is the probability that only 2 are
#answered correctly?

dbinom(2, size=10, prob=1/5)

[1] 0.3019899

#and 6...°7
dbinom(6, size=10, prob=1/5)

[1] 0.005505024

#0n average, 5 badgers cross a road every day.

#What is the probability of having exactly 5 badgers crossing the road in
#a particular day?

ppois(5, lambda=5)

[1] 0.6159607

4.4 Sample random values from a vector

#Sample 10 random letters of the english alphabet
v<-sample(x=letters, size=10) #letters is an inbutlt vector of letters in R
v

[1] IIZII IISH Iloll IIVII Ilull llqll Ilkll Ilgll l|bll |Iell

#0nce we sample one letter we cannot resample the same letter a second time (unless
#specified)

#so 1f we sample more than the size of a wvector 2t will give us an error
v<-sample(x=letters, size=50)

Error in sample.int(length(x), size, replace, prob): cannot take a sample larger thar

6 learning unit 8

4.5 Reshuffle a vector 4 LET’S LEARN THE BASIC FUNCTIONS

#To be able to resample the same element multiple times we have to use
#the argument "replace” (which by default is FALSE)
v<-sample(x=letters, size=50, replace=TRUE)

v

[1] llqll Ilell l1p|l I|Ol| |lj n llj n Ilrll llill llmll |II-I| llf" Ilull llmll IIXII Ilbll l1q|l l|vl|
[18] llwll Ilil| llm|l l|rll |lqll llull IISII llull I|all |lgl| llu|l IlCII llwll llbll Ilj n llr|l l|qll
[35] Ilkll Ilyll llall I|Cll |IVI| llsll IIZII Ilnll I|j n IIOI| llhll Ilj n llkll IICII Iloll llall

#Sample with uneven probabilities

#Here the letters at the end of the alphabet have higher probabilities to
#be resampled

v<-sample(x=letters, size=1000, replace=TRUE, prob=1:length(letters))
barplot (table(sort(v)), las=1)

70 — = [
60 —]
50 — — — [
40 —
30 —

20

f: DDDDDD SRR NNE NN

a ¢ e g ij I n p r t v x z

4.5 Reshuflle a vector

#We can use the sample function also to reshuffle a wvector
#for example, we can reshuffle of a vector from 1 to 10
sample(x=1:10, size=10)

[1] 3 8 4 5 110 9 7 2 6

#or we can reshuffle the vector of letters
sample (x=letters, size=length(letters))

[1] llyll Ilq" llw|l l|ell |l1|l lloll Ilrll llnll I|ill |lhl| llj" Ildll llfll IIVII Ilt" "X" l|bll
[18] IIZII Ilpl| llu|l I|kll |lgll llall IISII Ilmll I|Cll

7 learning unit 8

4.6 Reproducibility 5 NOW LET’S PRACTICE WHAT WE LEARNT

4.6 Reproducibility

The random values that R generates look random but are not. Pseudo-randomness in R is
achieved by taking in a seed value, which is calculated as a combination of values (e.g. time
of the day, space left on the hard disk, etc.). So to reproduce the output of a function that
samples randomly, we can set a “seed”. Note that set.seed() function only works once, i.e. if
you re-run the function that follows a second time you need to set a new seed.

for (i in 1:10) {
set.seed(10) #any seed is fine, you just get different random values
v<-sample(x=letters, size=3)

print(v)

}

[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"
[1] "n" "h" "k"

5 Now let’s practice what we learnt

5.1 Estimate the probability of an event occurring using a simu-
lation

Difficulty level = Basic
1) What is the probability of rolling a 7 with two 6-sided dices?

2) What is the probability that if I draw two dices (1 with 10 sides and the other with 5
sides) I get a 10 and a 5 respectively? Solve it using a simulation.

5.2 Create a function that generates a random password

Difficulty level = Medium

Instructions:
The function takes three arguments: the number of characters (nChar), capital letters
(nNumbers), and numbers that the password must contain (nCapital)

8 learning unit 8

5.3 Estimate the distribution of possible population size of a species given a few
information 5 NOW LET’S PRACTICE WHAT WE LEARNT

Hints:

- R has an inbuilt vector called letters, containing all letters of the alphabet

- toupper() function convert a lower case character to upper case

- using the argument “collapse” in the paste() function you can collapse a vector of elements
to a character string

5.3 Estimate the distribution of possible population size of a
species given a few information

Difficulty level = Medium-Difficult

We have studied the territory size and pack size of wolf population for several years. Question:
Given the data we have collected, what is the distribution of possible population sizes within
a given area? (estimate the median and 25th and 75th quantiles of the distribution)

Data:

- We estimated the territory size (in km2) for 8 packs: 82, 150, 120, 270, 200, 100, 95, 240
- We were able to count the number of individuals in 5 packs: 4, 5, 3, 6, 7

- We know that on average 10-15% of the population consist in solitary individuals

- The total habitat area available is 1000 km2

Hints:

- The population size can be estimated as (HabitatArea /TerritorySize) * PackSize + solitary
individuals

- build a simulation that samples the variables randomly to calculate the population size

- replicate the simulation 1000 times to get 1000 population size values

- the ‘median’ function allow you to calculate the median of a vector

- the ‘quantile’ function allow you to calculate the quantiles of a vector

(Quantiles are cut points dividing the range of a probability distribution into continuous
intervals with equal probabilities. The median of a distribution corresponds to the 0.5
quantile)

5.4 Simulate the population growth and fluctuations with a given
level of exploitation and plot the temporal trend

Difficulty level = Difficult

Instructions: - Simulate the population for 100 years (100 discrete time steps, which assumes
the population changes happens at distinct and separate points in time)

- The population starts with 100 individuals

- The growth rate (r) is a random value sampled from a normal distribution with a mean of
0.2 and a standard deviation of 0.1

- The population growth follows a continuous logistic model, i.e. Population * exp(r * (1 -
Population/K))

9 learning unit 8

5.5 The virtual ecologist approach 5 NOW LET’S PRACTICE WHAT WE LEARNT

- The carrying capacity (K) is 500 individuals

- Every year 10 individuals are removed from the population
- Plot the temporal trend plot(X=time, Y=population size)
- Set a seed so that it always produces the same result

5.5 The virtual ecologist approach

Difficulty level = Advanced

Question:
How many nights should I leave the traps in the field to be sure (95% confidence) that I

catch at least 100 individuals of a rodent species?

Information:

- We have 100 traps

- There are 10 rodent species in the area, but we are only interested in one

- The probability of catching one individual with 1 trap is 0.3 per trapping night.
- All rodent species have the same probability of being trapped.

Instructions:

- Simulate the population for 100 years

- The population starts with 100 individuals

- The growth rate (r) follows a normal distribution with a mean of 0.2 and a standard
deviation of 0.1

- The population growth follows a continuous logistic model, i.e. Population * exp(r * (1 -
Population/K))

- The carrying capacity (K) is 500 individuals

- Every year 10 individuals are removed from the population

10 learning unit 8

Learning unit 9 - Introduction to tidyverse
With exercises

Mirza Cengic

Contents
1 Learning unit goals

2 What are R packages
2.1 Where to find R packages
2.2 How to install and load R package

3 What is tidyverse?

3.1 What is tidy data?
3.2 Packages in the tidyverse meta-package

4 Working with tidyverse
4.1 filter() and select()
4.2 Chaining operations together with pipes
4.3 mutate(), transmute(), and arrange()
4.4 stringr packageo
4.5 Combining multiple functions oo
4.6 group_by and summarize

5 Using the ggplot2 package
5.1 Basic building blockso o
5.2 Putting it together Lo L
5.3 Building blocks summaryo
5.4 Customizing the graphic o0

6 Let’s practice
6.1 Exercise 1: Most common trees in Nijmegen.
6.2 Exercise 2: Most common tree genera in Nijmegen.
6.3 Exercise 3: Where to find a relict tree in Nijmegen?
6.4 Exercise 4: Age range of trees
6.5 FExercise 5: Greenest Nijmegen neighborhoods
6.6 FExercise 6: When were the trees planted?

2 WHAT ARE R PACKAGES

1 Learning unit goals

After this learning unit is completed, you should be able to:

e Understand what are R packages, and why are they useful

Understand what is tidyverse, and how shared design philosophy behind it is useful
Perform the most common data wrangling operation with tidyverse packages
Organize and summarize your data to gain new insight

Create effective visualizations with the ggplot2 package

2 What are R packages

Packages in R are the fundamental units of reproducible code, which can often dramatically
expand the usefulness of R. An R package is a collection of functions, data, and documenta-
tion that extends the capabilities of base R. In this document we will refer to the functions
that you get with a fresh installation of R as base R functions, while other functions come
from one of many additional packages. There are almost 15 000 packages available on the
official R package repository - CRAN (Comprehensive R Archive Network). Besides CRAN,
you can find many packages on other repositories, such as Bioconductor or GitHub.

2.1 Where to find R packages

There is a good chance that a package already exists for a problem that you are trying to
solve. However, due to thousands of various packages, it is sometimes difficult to find an
exact package that fits our needs. Some of the useful tools to find R packages are:

o CRAN task views gives an overview of packages per topic.

e awesome-r.com gives an overview per topic and recommends packages and learning
resources.

» Bioconductor has many useful packages for bioinformatics.

o GitHub is a website where code developers and programmers share their code. There
are many useful packages here under the different stage of development.

e Learn more about what is git and github from R user perspective.

2.2 How to install and load R package

Before we can use a package, we will need to install it first. The packages are usually
installed from online repositories, and to install a package from CRAN, we use the function
install.packages(). We only need to install a package once (unless we need a different
version of it), and next time we need it, we can just load it with the function library().
If we want to install a package from GitHub for example, then we need to use package
devtools that has function install github().

2 Learning Unit 9 - tidyverse

https://cran.r-project.org/web/views/
https://awesome-r.com
https://www.bioconductor.org
https://github.com
http://r-pkgs.had.co.nz/git.html

3 WHAT IS TIDYVERSE?

Before you can use a package, we have to install it first.
Package name here has to be in quotes
install.packages("xx"

To load the package, use the function library()
Package mame can be written with or without quotes here.
library(xx)

3 What is tidyverse?

Package tidyverse is a collection of multiple R packages that are designed to facilitate
working with data in R. All packages contained within it share underlying design philosophy.
They and are designed to work together naturally and to make the process of learning new
packages easier. There are four basic principles that tidyverse packages use:

o Designed for humans.

» Reuse existing data structures.

o Compose simple functions with the pipe.
o Embrace functional programming.

3.1 What is tidy data?

Tidy data framework makes it easier to clean datasets, since only a small set of tools are
needed to deal with a wide range of messy datasets. The organization of tidy data goes as
following:

e FEach variable forms a column.
o FEach observation forms a row.
e FEach value has its own cell.

000000
000000
000000
000000

AAAA
\AAA4

variables observations valu

D

S

3 Learning Unit 9 - tidyverse

3.2 Packages in the tidyverse meta-package 3 WHAT IS TIDYVERSE?

Many tools in the tidyverse expect data to be formatted as a tidy dataset. For more
information you can read the tidy data paper (Wickham 2014.).

3.2 Packages in the tidyverse meta-package

If tidyverse package ts missing, uncomment the line below and
install tidyverse.
RStudio shortcut to comment/uncomment lines - Ctrl + Shift + c

install.packages("tidyverse")
library(tidyverse)

-- Attaching packages ---————--—""""-"""""""""""————— - —————————

v ggplot2 3.0.0 v purrr 0.2.5
v tibble 1.4.2 v dplyr 0.7.6
v tidyr 0.8.1 v stringr 1.3.1
v readr 1.1.1 v forcats 0.3.0

-- Conflicts -------------—--—-—"»—-"-+-"—-""+-"H+"+"--+»-—-—"--+-—" """ """

x dplyr::filter() masks stats::filter()
x dplyr::lagQ masks stats::lag()

After tidyverse is loaded for the first time, the message with
loaded packages and possible conflicts (functions from other packages
with the same name) will be displayed.

You can use the function ls() to list the objects you currently have in
your environment, or you can use it in this way to see
all avatlable functions from a specific package.

Let's see what functions are avatlable in tidyverse
1s("package:tidyverse")

[1] "tidyverse_conflicts" "tidyverse_deps" "tidyverse_logo"
[4] "tidyverse_packages" "tidyverse_update"

As we can see from the output of the 1s() function above, there are only 5 functions that
come with tidyverse. Tidyverse is essentially a quick way to load multiple packages that
target solving problems using a shared approach, and we can consider it a meta-package, or
a package whose purpose is to load other packages.

Since tidyverse is just a collection of other packages, there aren't

many functions in tidyverse ttself. However, we can check what packages
come with tidyverse.

tidyverse_packages()

4 Learning Unit 9 - tidyverse

https://www.jstatsoft.org/article/view/v059i10

4 WORKING WITH TIDYVERSE

[1] "broom" "cli" "crayon" "dplyr" "dbplyr"

[6] "forcats" "ggplot2" "haven" "hms" "httr"

[11] "jsonlite" "lubridate" "magrittr" "modelr" "purrr"

[16] "readr" "readx1l\n(>=" "reprex" "rlang" "rstudioapi"
[21] "rvest" "stringr" "tibble" "tidyr" "xml2"

[26] "tidyverse"

Right now there are 26 packages contained in tidyverse, and some of them are created to
solve different data-related problems. Some of the packages we will use today are:

» readr contains functions for efficient reading and writing of data.

« stringr is useful for working with strings (characters).

» dplyr provides a powerful set of tools for data analysis and data manipulation. dplyr
is designed with local data in mind. If you need to work with remote databases, a
good alternative is dbplyr.

e tidyr offers tools that help you create tidy data from messy data.

« ggplot2 is a powerful tool for making data visualizations.

e magrittr is included for its pipe operators (most common one is %>%), that can be
used to chain the operations together.

Other packages that we will not cover today, but that are very useful:

e lubridate is useful for working with dates and time-series.

o purrr enhances R’s functional programming capabilities, and adds to the *apply family
of functions, enabling you to replace many for-loops and write more expressive code
that is easier to read.

« modelr package provides functions for creating modeling pipelines, and it is designed
primarily to support teaching the basics of modeling within the tidyverse. There is
a set modeling-oriented tools being developed that follow tidyverse design philosophy
called tidymodels.

For more information, you can visit the tidyverse website.

4 Working with tidyverse

Let’s load Nijmegen trees dataset, and see what’s in there. Download the materials from
Brightspace, and open the LU9_tidyverse.RProj file from the main folder. This is RStudio
project file that helps you organize your work better, and it will already take care of the
working directory path for you (check this with getwd()).

You can use read_csv() instead of read.csv() to load Nijmegen trees data.
tidyverse::read_csv() is a safer and faster alternative to the
base R utils::read.csv().

nijmegen_trees <- read_csv('"data/nijmegen_trees.csv")

) Learning Unit 9 - tidyverse

https://github.com/tidymodels/tidymodels
https://www.tidyverse.org/packages/

4 WORKING WITH TIDYVERSE

Parsed with column specification:
cols(

postcode_nummer = col_integer(),
wijk = col_character(),

area = col _double(),

BOOMSOORT = col_character(),

PLANTJAAR col_integer(),

ID = col_double(),

x = col_double(),

y = col_double()

)

Ezplore data
head(nijmegen_trees)

A tibble: 6 x 8

postcode_nummer wijk area BOOMSOORT PLANTJAAR ID X y
<int> <chr> <dbl> <chr> <int> <dbl> <dbl> <dbl>
1 6524 Galge~ 1.00 Aesculus hip~ 1930 256 1.88eb5 4.27eb5
2 6524 Galge~ 1.00 Aesculus hip~ 1930 257 1.88eb 4.27eb
3 6524 Galge~ 1.00 Aesculus hip~ 1930 258 1.88eb5 4.27eb
4 6524 Galge~ 1.00 Aesculus hip-~ 1950 259 1.88eb5 4.27eb
5 6524 Galge~ 1.00 Aesculus hip-~ 1960 260 1.88eb5 4.27eb5
6 6524 Galge~ 1.00 Aesculus hip~ 1950 261 1.88eb5 4.27e5

You can use glimpse() to see the structure of your dataframe and
the data in 4t.

It's basically a combination of str() and head()
glimpse(nijmegen_trees)

Observations: 61,992
Variables: 8
$ postcode_nummer <int> 6524, 6524, 6524, 6524, 6524, 6524, 6524, 6524...

$ wijk <chr> "Galgenveld", "Galgenveld", "Galgenveld", "Gal...
§ area <dbl> 1.000916, 1.000916, 1.000916, 1.000916, 1.0009...
$ BOOMSOORT <chr> "Aesculus hippocastanum Baumannii", "Aesculus ...
$ PLANTJAAR <int> 1930, 1930, 1930, 1950, 1960, 1950, 1950, 1930...
$ ID <dbl> 256, 257, 258, 259, 260, 261, 262, 263, 264, 2...
$ x <dbl> 188114.5, 188064.3, 188017.8, 188031.7, 188204...
$y <dbl> 427420.7, 427415.6, 427410.9, 427311.4, 427418...

read_csv function will return a tibble. Tibble is essentially a dataframe,
whose most obvious advantage ts how tt %s printed in the console.

nijmegen_trees

A tibble: 61,992 x 8

6 Learning Unit 9 - tidyverse

4.1 filter() and select() 4 WORKING WITH TIDYVERSE

#it postcode_nummer wijk area BOOMSOORT PLANTJAAR ID X y
<int> <chr> <dbl> <chr> <int> <dbl> <dbl> <dbl>
1 6524 Galge~ 1.00 Aesculus hi~ 1930 256 1.88eb5 4.27eb5
2 6524 Galge~ 1.00 Aesculus hi-~ 1930 257 1.88eb5 4.27eb
3 6524 Galge~ 1.00 Aesculus hi~ 1930 258 1.88e5 4.27eb
4 6524 Galge~ 1.00 Aesculus hi-~ 1950 259 1.88eb5 4.27eb
5 6524 Galge~ 1.00 Aesculus hi-~ 1960 260 1.88eb5 4.27eb
6 6524 Galge~ 1.00 Aesculus hi~ 1950 261 1.88eb 4.27e5
7 6524 Galge~ 1.00 Aesculus hi-~ 1950 262 1.88eb5 4.27eb
8 6524 Galge~ 1.00 Aesculus hi~ 1930 263 1.88e5 4.27eb
9 6524 Galge~ 1.00 Aesculus hi~ 1930 264 1.88eb5 4.27eb
10 6524 Galge~ 1.00 Aesculus hi-~ 1930 265 1.88e5 4.27eb
... with 61,982 more rows

Functions in tidyverse often have their role in the data analysis pipeline in a same way that
words play a role in sentences. For this reason, you will often see functions that perform
an action referred to as werbs. In this section you will learn about some key tidyverse
functions/verbs with which you can solve the majority of your data manipulation tasks. For
more information on data analysis with tidyverse, you can refer the free book R for Data
Science.

« Choose observations (rows) by their values with filter().

« Choose variables (columns) by their names with select ().

o Create new variables using functions and existing variables with mutate() and
transmute().

e Summarize many observations to a single value with group_by() and summarize().

« Reorder the dataframe with arrange ().

These functions provide the main verbs for the language of data manipulation. These func-
tions can be used individually, or you can chain them together to perform a complex analysis,
which we will try later. They have an expected input and output data type, which is most
commonly a dataframe/tibble.

4.1 filter() and select()

Functions filter() and select() come from the dplyr package, and are used to filter
specific observations (rows), or to select or remove specific variables (columns). Remember,
you filter rows, and select columns.

With filter() you can subset observations according to their values. For example, we
can filter all rows from nijmegen trees dataset for given species, or we can filter rows to
see which trees were planted in a certain year. The second and subsequent arguments of
filter() are the expressions that filter the data frame.

With base R you may do something like this:

7 Learning Unit 9 - tidyverse

https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://dplyr.tidyverse.org/

4.1 filter() and select() 4 WORKING WITH TIDYVERSE

Filtering rows where the wvartable PLANTJAAR is equal to 2019.
In other words, return a dataset containing trees planted in 2019.
nijmegen_trees[nijmegen_trees$PLANTJAAR == 2019,]

The square brackets [syntax (syntax is the way the code is written) to subset specific rows
or columns is not very intuitive, especially if you haven’t programmed before. After you
finish this lesson, you can judge for yourself what will be easier to remember.

Remember to use equals operator ==, not argument assignment operator =.
filter(nijmegen_trees, PLANTJAAR == 2019)

Filter species with NA values in the wvariable BOOUMSOORT
filter(nijmegen_trees, is.na(BOOMSOORT))

You can also use functions that return TRUE/FALSE. Here we will
find pine species in Nijmegen, using the function str_detect()
from tidyverse package stringr.

filter(nijmegen_trees, str_detect(BOOMSOORT, "Pinus"))

Remembering how to do this with base R usually takes some time, because
the arguments of grep function (equivalent of str_detect) are inverted.
nijmegen_trees[grep("Pinus", nijmegen_ trees$BOOMSOORT),]

To use filter() function effectively, you can use any of the value comparison operators
provided in base R, such as: >, >= <, <= != (not equal), == (equal), or %in% (matches)
when you want to match multiple values. You can also expand this using logical operators
to get multiple conditions (i.e. filter(value > 8 & value < 16)). You can also use
functions that return TRUE or FALSE to filter the values (such as str_detect () function).
Notice that you do not necessarily have to use quotes to refer to the columns when using
tidyverse function, because these functions use what is called lazy-evaluation.

With select() function, you can choose which columns to retain or remove from your
dataframe, to get to the variables you are interested in. This is can be particularly useful
when working with datasets with many variables. In this case select() may not be that
useful, but you can get the idea how to use it.

Selecting columns
Select columns BOOMSOORT and wijk using base R approach

nijmegen_trees[, c("BOOMSOORT", "wijk")]

Select a single column with select()
select(nijmegen_trees, BOOMSOORT)

You can separate column names with comma, or use c()
Select variables BOOUMSOORT and wijk from the dataset

8 Learning Unit 9 - tidyverse

4.2 Chaining operations together with pipes 4 WORKING WITH TIDYVERSE

select(nijmegen_trees, BOOMSOORT, wijk)
select(nijmegen_trees, c(BOOMSOORT, wijk))

If we do not want to keep columns, but remove them instead,
we can do that with the "-" sign

Remove columns BOOMSOOURT and wijk from the dataset
select(nijmegen_trees, -BOOMSOORT, -wijk)
select(nijmegen_trees, -c(BOOMSOORT, wijk))

Check the function help with ?select for examples of helper functions
In this case, take all columns that start with a letter "p"

You can make it case sensitive with the argument ignore.case
select(nijmegen_trees, starts_with("p"))

4.2 Chaining operations together with pipes

You will likely run into situations when you need to write many functions to perform a task.
During these types of operations, we can either decide to use temporary variable name, or
embed the functions within each other (eg. filter(select(rename()))), or if we often need
to run multiple functions on a dataframe to perform a specific operation we can introduce
the concept of chaining the operations together to create a dataframe. To perform this, we
can use the pipe operator from the magritrr package %>%. Use Ctrl 4+ Shift + M keyboard
shortcut in RStudio to insert pipe.

The pipe operator will take the whatever is on the left-hand side (LHS), and send it to the
function on the right-hand side (RHS). LHS is interpreted as a first argument of the RHS
function. If pipes don’t “click” with you initially, don’t give up and try to understand how
pipes can be useful, since piping functions and chaining operations together will be a very
useful addition to your toolbox. Piping also makes code more readable for humans, since it
follows a logical order of operations. You can think about the pipe %>% as “and then”.

Let’s see how can we write the following sequence of events as R code:

o First eat breakfast, and then bike to the University, and then study for an
hour, and then drink some coffee.

This 1s how you may do it using "temporary'" wvariable

morning routine breakfast <- eat(meal = "breakfast")

morning routine_travel <- bike(morning routine breakfast, destination = "university")
morning routine_study <- study(morning routine_travel, length = "60")
morning_routine <- drink(morning routine_study, type = "coffee")

More realistic
morning routine <- eat(meal = "breakfast")

9 Learning Unit 9 - tidyverse

4.2 Chaining operations together with pipes 4 WORKING WITH TIDYVERSE

morning routinel <- bike(morning_routine_breakfast, destination = "university")
morning routine2 <- study(morning routine_travel, length = "60")
morning routine final <- drink(morning routine_study, type = "coffee")

Or we can nest functions inside out in a single expression. It can be
difficult to track parentheses or argument postitions.
Since 1t cannot be fitted on a single line, we will break <t across lines.
morning routine <- drink(study(bike(eat(meal = "breakfast"),
destination = "university"),
length = "60"), type = "coffee")

With pipes.
The code 1s easier to read, and writing this code s more fluid
since 1t follows human language logic.

morning routine <- eat(meal = "breakfast") %>%
bike(destination = "university") »>%
study(length = "60") %>%
drink(type = "coffee")

Let’s start examining this dataset. First we see that it contains data on tree species in Ni-
jmegen, along with the species name, year when it was planted, postcode, and neighborhood
in which it is located. There are also x and y coordinates that can be used to convert this
dataframe to a spatial points dataframe, however we will not do this today.

You can either do this:
head(nijmegen_trees_cleaned2)

Or with pipes, you can do it this way:
nijmegen_trees_cleaned2 7> head()

NOTE!
Use Ctrl + Shift + M keyboard shortcut im RStudio to imsert pipe.

Let's change the second arqument; this will print out first 10 rows
of the object, instead of 6, which is the default for head():
head(nijmegen_trees_cleaned2, 10)

When we use pipes, the piped object ('nijmegen_trees_cleaned2')

1s assumed to be in the first argument place of the function

that follows, and the second argument (n for function head())

can be then written in the first place, like this:

nijmegen trees_cleaned2 7>% head(10)

This 1s the reason why all functions in tidyverse have the data object

10 Learning Unit 9 - tidyverse

4.3 mutate(), transmute (), and arrange () 4 WORKING WITH TIDYVERSE

as tts first argument.

Let's repeat the example from above using pipes. Let's pay attention to
writting clean and readable code.

rename () function is useful to remame columns.

Left hand side is the new column mame, right hand side is the old column
name, %i.e. rename(x, new_name = old_mame).

We will also remove the trees that have O wvalue for the year of planting,
since this s most likely incorrect data input.

OB RO R R W

nijmegen_trees %>7
rename (
postcode = postcode_nummer,
species = BOOMSOORT,
year = PLANTJAAR) %>%
select(species, year, postcode, wijk) %>%
filter(year > 0)

What this code does you can rTead out as:

Take 'nijmegen_trees' data, and then rename the 3 columns, and then
select the 4 columns, and then filter rows where wvartable 'year'

1s larger than zero.

H R KRR

4.3 mutate(), transmute(), and arrange()

You will probably use functions mutate and transmute very often, especially when combined
with pipes. With the function mutate, you can add new columns or modify existing ones, and
you can manipulate everything inside mutate/transmute with functions and mathematical
operations.

Let's add a column in which we calculate tree age
While in base R you might do something like this:
nijmegen_trees$tree_age <- 2019 - nijmegen_trees$PLANTJAAR
With tidyverse you can use mutate from the dplyr package
nijmegen_trees %>%

mutate (

tree_age = 2019 - PLANTJAAR
)

If you want to sort the rows by a column, you can use the arrange () function. By default

11 Learning Unit 9 - tidyverse

4.4 stringr package 4 WORKING WITH TIDYVERSE

it gives ascending order, but you can nest desc() to sort a variable in descending order.

Some of the oldest trees in this database are the beech trees in Heijendaal.
nijmegen_trees %>%
mutate(
tree_age = 2019 - PLANTJAAR
) h>h

arrange(desc(tree_age))

For workflows that involve data analysis, you will likely want to create a dataframe that fits
your exact needs. Function transmute() starts from a clean slate, and you can think of it
as using mutate () that creates columns in an empty dataframe.

Clean up the data
nijmegen_trees_cleaned <- nijmegen_trees >/
transmute (
postcode = postcode_nummer,
wijk,
species = BOOMSOORT,
year = PLANTJAAR,
age = 2019 - year
) W>h
filter(year > 0)

Check the contents of species column
unique(nijmegen_trees_cleaned$species)

There are some issues with the species names here, so let’s use another tidyverse package
that is useful for working with strings (character data).

4.4 stringr package

Package stringr is a tidyverse tool for manipulating strings (character data). Manipulating
strings is a common issue during data analysis, and stringr has many useful functions that
are more intuitive than base R functions with the same purpose. It has a useful design feature
where every function begins with a prefix str_*(), so you can use RStudio autocomplete
feature to find the function you need.

We can see that there are some hybrid species (with x in the name, referring to the crossing),
or different varieties or subspecies. We will try to create a name that could best summarize
the species binomial name. You can decide also to create a column referring to whether the
species is a hybrid or not.

since we will just change one column, and add another, we'll use mutate()
Remember, mutate adds columns, so is_hybrid will go to the last place,
and we only modify column species, since the column name already exists.

12 Learning Unit 9 - tidyverse

https://stringr.tidyverse.org/

4.5 Combining multiple functions 4 WORKING WITH TIDYVERSE

nijmegen_trees_cleaned 7>%

mutate(
is_hybrid = if_else(str_detect(species, " x "), TRUE, FALSE),
species = str_replace(species, " x ", " "),
species = str_replace(species, " ", " "),
species = word(species, end = 2))

If we want to use some information from the LHS object,
you can use "." for that.

nijmegen_trees_cleaned %>
mutate (
id = 1:(arow(.))
)

4.5 Combining multiple functions

We will clean this dataset, and prepare it for further analysis. This chunk of code does many
things at once, but essentialy it is a single step of creating a cleaner dataframe from the
original one. We will create few columns that may not be that useful, but we will create
them to demonstrate different ways of creating columns. We will also use here the function
case_when() from package dplyr, which behaves like a nested if_else() and it can be
very useful to know that this function exists.

Clean the data

tree_data_cleaned <- nijmegen_trees 7>
rename (year = PLANTJAAR) %>%
filter(year > 0) %>% # Remove trees with unrealistic values
mutate (

species = str_replace(BOOMSOORT, " x ", " "), # Remove hybrid specties
species = str_replace(BOOMSOORT, " ", " "), # Remove underscore
species = word(species, end = 2),

test = "test column",

col = 1:nrow(.),
species2 = .$BOOMSOORT,
tree_age = 2019 - year
) h>h
transmute (
species, year, tree_age,
wijk,
Postcode = postcode_nummer,
Reclassify to two values with if_else()
age _binary = if_else(tree_age > 40, "01d", "Young"),

13 Learning Unit 9 - tidyverse

4.6 group_by and summarize

4 WORKING WITH TIDYVERSE

Reclassify to multiple values with case_when()
age_categories
<= 2 ~ "Stem",
<= 20 & tree_age > 2 ~ "Young",

<= 40 & tree_age > 20 ~ "Adult",
<= 80 & tree_age > 40 ~ "Mature",
tree_age > 80 ~ "01d",

))

tree_age
tree_age
tree_age
tree_age

TRUE ~

"None"

tree_data_cleaned

= case_

A tibble: 61,886 x 7

##
##
##
#it
#i#
##
##
##
##
#i#
##
10

O© 0 NO O W N =

#t # ...

species year
<chr> <int>
Aesculus hip~ 1930
Aesculus hip~ 1930
Aesculus hip~ 1930
Aesculus hip~ 1950
Aesculus hip~ 1960
Aesculus hip~ 1950
Aesculus hip~ 1950
Aesculus hip~ 1930
Aesculus hip~ 1930
Aesculus hip~ 1930

with 61,876 more

when (

tree_age
<dbl>
89
89
89
69
59
69
69
89
89
89
rows

4.6 group_by and summarize

wijk
<chr>
Galgen~
Galgen-~
Galgen~
Galgen~
Galgen-~
Galgen~
Galgen-~
Galgen~
Galgen~
Galgen~

Postcode
<int>
6524
6524
6524
6524
6524
6524
6524
6524
6524
6524

age_binary
<chr>
0ld
01ld
0ld
014
014
0ld
0ld
0ld
01d
0ld

age_categories
<chr>
0ld
01d
0ld
Mature
Mature
Mature
Mature
0ld
0ld
0ld

Soon you will want to learn more from your data. You will find that most of those things
are related with counting per some group. To group a table, use group_by() which will
create a grouped tibble. ungroup () removes grouping, and should be used after you perform
operations on the grouped data. So if we want to know which neighborhood in Nijmegen
has the oldest trees, or which is most common tree species in the old city core, you will end
up using just few more additional functions.

Let’s look more into the data using columns wijk and tree_age, and analyze the age of
trees for Nijmegen neighborhoods. We will calculate for each neighborhood (wijk) average
tree age, age of the oldest tree in the neighborhood, as well as the number of trees in each
neighborhood.

Calculate mean age per meighbourhood
We use function summarize() to summarize values per group
tree _data_cleaned %>%

group_by(wijk) %>% # Create grouped tibble

14

Learning Unit 9 - tidyverse

4.6 group_by and summarize 4 WORKING WITH TIDYVERSE

summarize (
mean_age = mean(tree_age), # Use na.rm = TRUE if there are NA values
max_age = max(tree_age)

) W

ungroup() # We need to remove grouping afterwards

A tibble: 21 x 3

#it wijk mean_age max_age
<chr> <dbl> <dbl>
1 't Acker 33.1 169
2 Aldenhof 44 .4 119
3 Biezen 26.3 169
4 Bottendaal 22.3 99
5 Galgenveld 32.8 99
6 Goffert 49.0 169
7 Hatert 34.3 119
8 Hatertse Hei 37.9 119
O Hees 29.3 169
10 Heijendaal 58.3 269
... with 11 more rows

Function summarize () will reduce multiple values down to a single value. This means that
you can lose lot of information from your data, and keep only the grouped and calculated
values. To perserve all of the columns, we can use mutate () instead of summarize().

We will also calculate the number of observations per group
Store this data into a wvariable for later use
plot_data_age <- tree_data_cleaned %>’
group_by(wijk) %>% # Create grouped tibble
mutate (
mean = mean(tree_age),
max = max(tree_age),
n =n() # n() gives the number of observations per group
) h>h
ungroup ()

plot_data_age

A tibble: 61,886 x 10

#it species year tree_age wijk Postcode age_binary age_categories mean
<chr> <int> <dbl> <chr> <int> <chr> <chr> <dbl>
1 Aescul~ 1930 89 Galg-~ 6524 01d 01d 32.8
2 Aescul~ 1930 89 Galg~ 6524 01d 01d 32.8
3 Aescul~ 1930 89 Galg-~ 6524 014 014 32.8
4 Aescul~ 1950 69 Galg~ 6524 014 Mature 32.8
b5 Aescul~ 1960 59 Galg-~ 6524 01d Mature 32.8

15 Learning Unit 9 - tidyverse

4.6 group_by and summarize 4 WORKING WITH TIDYVERSE
6 Aescul~ 1950 69 Galg-~ 6524 01d Mature 32.8
7 Aescul~ 1950 69 Galg~ 6524 01d Mature 32.8
8 Aescul~ 1930 89 Galg-~ 6524 01d 0ld 32.8
9O Aescul~ 1930 89 Galg~ 6524 01d 01ld 32.8
10 Aescul~ 1930 89 Galg~ 6524 01d 014 32.8
... with 61,876 more rows, and 2 more variables: max <dbl>, n <int>

Calculating the number of trees per mneighborhood
We will take only a few areas of Nijmegen
tree _data_cleaned %>%
filter(wijk %inJ, c("Heijendaal","Lent", "Goffert")) %>%
group_by (wijk) %>%
summarize (
trees_number = n()
) >
ungroup ()

A tibble: 3 x 2

wijk trees_number
<chr> <int>
1 Goffert 4187
2 Heijendaal 3458
3 Lent 3550

We can group by multiple wvariables. Let's check the number of trees per
neighborhood and per age category
tree _data_cleaned %>%

filter(wijk %inJ), c("Heijendaal","Lent", "Goffert")) %>%

group_by(wijk, age_binary) %>%

summarize (

trees _number = n()

) h>%h

ungroup () %>%

arrange (trees_number)

A tibble: 6 x 3

wijk age_binary trees_number
<chr> <chr> <int>
1 Lent 0ld 298
2 Heijendaal Young 987
3 Goffert Young 1844
4 Goffert 0ld 2343
5 Heijendaal 0ld 2471
6 Lent Young 3252

It seems like there are many young trees in Lent

16 Learning Unit 9 - tidyverse

5 USING THE GGPLOT2 PACKAGE

5 Using the ggplot2 package

Once we prepare our data for analysis, we can use vizualization to get a better insight. Using
data vizualization is important during data cleaning and data analysis stages. Main tool for
data visualization with R has became the ggplot2 package. It features many options, and
it uses a slightly different approach to visualize the data compared to the plot () approach
from base R. With base R plotting, you need to manually add all of the individual plot
components to the canvas, such as points, lines, legends etc. However, ggplot2 is based on
the grammar of graphics paradigm (hence the gg in ggplot2). Grammar of graphics has few
constant elements that you need to have in order to build the plot, and many things are done
already automatically for you. With ggplot2, we need to initialize the plot and provide the
data (with function ggplot()), tell it how to map variables to aesthetics (function aes()),
what graphical primitives/geometries to use (function geom_x*()), and it will take care of the
details. We connect different ggplot elements with + symbol (don’t confuse %>% and + when
using ggplot2).

Let’s explore the Nijmegen trees dataset with ggplot2.

5.1 Basic building blocks

The most basic elements of creating a ggplot2 visualization are the functions ggplot(),
aes() and geom_*():

The plot
Function ggplot() initializes a ggplot object. Every plot has to start with this function,
and you can use it to declare what data will be shown in the plot.

ggplot(tree_data_cleaned)

17 Learning Unit 9 - tidyverse

https://ggplot2.tidyverse.org/

5.1 Basic building blocks 5 USING THE GGPLOT2 PACKAGE

The result of code above is a blank canvas. The data is already mapped to the canvas, but
we need to tell ggplot how to map the data to the visual properties (aesthetics) of geometric
objects (geoms). Although it may sounds cryptic, it should be more clear with the first
example.

In this case, we want to check the column year (planting year) to see if everything is ok.
Histograms can be a useful tool to inspect numerical data, so we will create our first histogram
with ggplot2.

The aesthetics

With aesthetics you map your data to the axes, as well as other graphical properties such
as color, size, shape. You can have aesthetics for each geom, and control the appearance of
each one individually. In cartesian coordinate system, x axis is the horizontal one, and y is
the vertical one. When you want to show a variable with a single value per observation, such
as in this, common approach is to show the observations on the x axis, an variable value on
the y axis. In this case the observation is in the column year, and we will map it to the x
axis, using the aes () function.

ggplot(tree_data_cleaned) +
aes(x = year)

18 Learning Unit 9 - tidyverse

5.2 Putting it together 5 USING THE GGPLOT2 PACKAGE

1800 1900 2000
year

The graphics (geoms)

We can see that there are some more elements in the plot, such as the x axis with its range
of values, and the axis name. However, we still have to tell ggplot which geometric objects
should it use to represent the data visually. Geometric graphical objects in ggplot2 have
function prefix geom_* (). Histograms are made with geom_histogram(), and a histogram
just need value of one variable for x axis. The values for that variable will be binned, and
frequency in those bins will be plotted. For a barchart, where you map variable to y axis as
well, use geom_bar () or geom_col().

5.2 Putting it together

ggplot(tree_data_cleaned) +
aes(x = year) +
geom_histogram()

“stat_bin() " using “bins = 30°. Pick better value with “binwidth~.

19 Learning Unit 9 - tidyverse

5.2 Putting it together 5 USING THE GGPLOT2 PACKAGE

10000 -

7500 -
1<
3 5000-
[&]

2500 -

O_ , P
1 1 1 1 1 1
1750 1800 1850 1900 1950 2000
year

We can also map data to colors. For this kind of a geom, you can modify
the outline color and the fill color with arguments color and fill.
This needs to be in the aesthetics part. Note that you can use multiple geoms,
and different aesthetics for each geom.
ggplot(tree_data_cleaned) +
aes(x = year, fill = age_binary) +
geom_histogram()

“stat_bin() " using “bins = 30°. Pick better value with “binwidth’.

20 Learning Unit 9 - tidyverse

5.2 Putting it together 5 USING THE GGPLOT2 PACKAGE

10000 -
7500 -
age_binary
IS
3 5000- . Old
(&)
. Young
2500 -
0_ N
1 1 1 1 1 1
1750 1800 1850 1900 1950 2000
year

Although many things can be modified here, we now know that the majority of trees were
planted in the last 100 years, with the increasing amount during the last 70 years. Let’s
change the data we use for plotting, and see the average age of trees per neighborhood. We
will use new geoms, and combine two geoms for a richer plot.

Let's change the data, and see the average age of trees per neighborhood
ggplot(plot_data_age) +
You can put aesthetics inside of geom function.
geom_point(aes(x = wijk, y = mean, size = n)) +
geom_text(aes(x = wijk, y = mean + 2, label = wijk),
color = "blue", size = 3)

21 Learning Unit 9 - tidyverse

5.3 Building blocks summary 5 USING THE GGPLOT2 PACKAGE

60 - Heijendaal
Goffert
50- .
Aldenhof Hengstdal n
Lankforst Weezenhof e 1000
c 40- Hatertse Hei Hunnerbgeerbosch—Oost W&tkanaaldijl ® 2000
< °® ® Stadscentrum@ @ 3000
e Hatert ii
Acker Galgenveld @ Nije Veld @ @ 2000
pa ®
Hees Wolfski . >000
30- ®
Biezen o @ s
o
Bottendaal
[]
20-
Lent Ressen
't AdderBimSraigeaiteftitastet tsd-Hiescheddgsiohadradisio shlije Vet ratitanfaidiail
wijk

If you don't map geom graphics to a wvartable, then the argument should be
outside of aes(). See how the color and size of text are outside of aes().
We added here a wvalue of 2 to the y position of the tezxt,

so that the wijk label s above the point.

We have our first graphic created with ggplot2, however there are many things that can
be improved. The x axis is very difficult to read, which could be solved in multiple ways
(rotating the label, rotating the plot, show subset of data). We have also mapped point size
the the data points. If you want to map data to the variable, that needs to be added inside
of the aes(). If you want to set the color or size manually (color the dots red for example),
you need to have it outside of aes(). Depending on the geom, sometimes you control the
color both with color and £ill arguments. For example, outline of bars is controled with
color, and color of box with fill.

5.3 Building blocks summary
ggplot?2 is a powerful package with many options that you can explore. Here we will cover
only the very basics of ggplot, but enough to get you started.

« plot
Function ggplot () initializes a ggplot object. Every plot has to start with this function,
and you can use it to declare what data will be shown in the plot.

22 Learning Unit 9 - tidyverse

5.4 Customizing the graphic 5 USING THE GGPLOT2 PACKAGE

e aes

With aesthetics you map your data to the axes. You can have aesthetics for each geom,
and control the appearance of each one individually.

geom__

— geom__point
— geom__line

— geom__col

— geom__boxplot
— geom__text

..and many others.

5.4

scale

Modify the xy scales, color palletes, and add transformations to the scales.

stat__

Add statistics to the plot. For example, you can easily add a fitted line to point data.
coord__

Manipulate the plot coordinates.

theme

Manipulate the visual aspects of the theme. You can modify the appareance of almost
all components of the plot. You can also use a different theme that have theme *()
prefix.

facet

Faceting is a useful way of showing multiple panels in a single graphic, where we use
a variable to separate the panels.

Customizing the graphic

The graphic we made is still difficult to read, and color is not very useful here. Instead
of modifying the labels, we can modify plot coordinates so that the labels are horizontal.
We will also use geom_col() where instead of using points, we shows bars whose heights
represent data value.

Plot mean age using barchart, and rotate the
plot by adding the coord modifier
plot_data_age %>%

ggplot() +

aes(x = wijk, y = mean) +

geom_col() +

coord_£flip()

23 Learning Unit 9 - tidyverse

5.4 Customizing the graphic 5 USING THE GGPLOT2 PACKAGE

Wolfskuil -
Westkanaaldijk -
Weezenhof -
Stadscentrum -
Ressen -

Nije Veld -
Neerbosch-Oost -
Lent-
Lankforst -
Hunnerberg -
Hengstdal -
Heijendaal -
Hees -
Hatertse Hei-
Hatert -
Goffert -
Galgenveld -
Bottendaal -
Biezen -
Aldenhof -

't Acker -

wijk

1 1 1
0e+00 1le+05 2e+05
mean

This already looks much better. However, let’s try to see how we can improve this graphic
further. This graphic would be much more effective if the bars were ordered, which will
require manipulating the data before plotting it. Luckily, there is a tidyverse solution to
this problem as well. We will also use one of the themes included with ggplot2, and we
will label the axes and add a title. It is possible to adjust almost every part of ggplot with
function theme (). However, there are many packages that extend ggplot2 capabilities, from
new geoms, themes, interactivity, web implementation, and others. Click the links for more
detailed list of ggplot2 building blocks, and the extensions. If you want to see more cool
data visualizations made with R and ggplot?2, visit the R graph gallery.

Create barplot showing mean tree age per mneighbourhood

Using fct_reorder from forcats package, we will reorder column wijk
according to the mean wvalue, and store it in new factor column wijk_fct

Pay attention when do you need to use '/>)', and when do you use '+'.
The '+' operator is only used to chain ggplot elements and comes after

the function ggplot().

For this example, let's break down the plot. Since it can be stored into a
vartable, we will store the basic block, and modify it further

p_avg_age <- plot_data_age 7%>%

24 Learning Unit 9 - tidyverse

https://ggplot2.tidyverse.org/reference/
http://www.ggplot2-exts.org/gallery/
https://www.r-graph-gallery.com/

5.4 Customizing the graphic 5 USING THE GGPLOT2 PACKAGE

mutate (

wijk _fct = fct_reorder(wijk, mean)
) h>%
ggplot () +
aes(x = wijk_fct, y = mean) +
geom_col()

p_avg_age

2e+05 -

1e+05- | I II |||||
Oe+00_II.IIII I II II

LerReﬁmenc&eﬂMnlfskhngent/éld@e VMBMWM&MeMMBo@s@amtendac
wijk_fct

mean

p_avg_age_themed <- p_avg_age +
coord_flip() +
theme_minimal() +
labs(title = "Average age of trees in Nijmegen",
y = "Years", x = NULL, caption = "Data source: opendata.nijmegen.nl") +
theme (
plot.title = element_text(size = 12),
panel.grid.major.y = element_blank()
)

p_avg_age_themed

25 Learning Unit 9 - tidyverse

5.4 Customizing the graphic 5 USING THE GGPLOT2 PACKAGE

Average age of trees in Nijmegen

Heijendaa
Goffert
Hengstdal
Aldenhof
Lankforst
Weezenhof
Neerbosch-Oost
Westkanaaldijk
Hatertse Hei
Hunnerberg
Stadscentrum
Hatert

Nije Veld

't Acker
Galgenveld
Hees
Wolfskuil
Biezen
Bottendaal
Ressen

Lent

le+05 2e+05
Years

o
D
+
o
o

Data source: opendata.nijmegen.nl

To save the plot, use ggsave function
ggsave("Output/plot_treeage.png”, p_avg_age_themed)

Let’s use facetting feature to show the distribution of tree age for selected neighborhoods.
The easiest way to do this is with histograms. Let’s first map the color of bars to the wijk
column (neighborhood), and we will use a color scale that works better with qualitative
data. In this case we will use ColorBrewer scale, which can be accessed with the function
scale_fill brewer().

Create a histogram that shows the age frequency of trees for 4 meighborhoods
p_hist_age <- tree_data_cleaned 7>/
filter(wijk %inJ c("Goffert", "Lent","Stadscentrum", "Heijendaal")) %>%
ggplot() +
aes(x = tree_age, fill = wijk) +
geom_histogram() +
scale_fill_brewer(type = "qual", palette = 6) +
theme _minimal ()
p_hist_age

“stat_bin() " using “bins = 30°. Pick better value with “binwidth~.

26 Learning Unit 9 - tidyverse

5.4 Customizing the graphic 5 USING THE GGPLOT2 PACKAGE

2000
1500
wijk
- . Goffert
c
3 1000 . Heijendaal
5]
III Lent
. Stadscentrum
500
O R —
0 100 200
tree_age

This can be visualized in a better way, so let's use faceting to show data in
multiple panels.
We need to use the tilde operator here (~), where we say which variable s
used for faceting. We will modify the theme to move the legend to the bottom
p_hist_age +

facet_wrap(~ wijk) +

theme (

legend.position = "bottom"

)

“stat_bin() " using “bins = 30°. Pick better value with “binwidth-.

27 Learning Unit 9 - tidyverse

5.4 Customizing the graphic 5 USING THE GGPLOT2 PACKAGE

Goffert Heijendaal
1200

900
600

300

i In

Lent Stadscentrum

count

1200

900

600

300

HL Bl
0 100

tree_age

wijk . Goffert . Heijendaal . Lent . Stadscentrum

0 100 200 200

28 Learning Unit 9 - tidyverse

6 LET’S PRACTICE

6 Let’s practice

6.1 Exercise 1: Most common trees in Nijmegen.

Difficulty level - Easy
What are the most common tree species planted in Nijmegen?

Task:
- What are the ten most frequent species of trees that are planted in Nijmegen. Minimum
things you need to have is the species scientific name and the number of individual trees in

descending order for top 10 tree species.

Hints:

- Helper function n() gives the number of observations per group.

- Read the help of the arrange () function to see how to reorder descending.

- This task can be solved with pipes in 5 lines of code or less, but use as much code as needed.

6.2 Exercise 2: Most common tree genera in Nijmegen

Difficulty level - Easy
What are the most common tree genera planted in Nijmegen?

Task:

o Find out what are ten most frequent tree genera in Nijmegen.

Hints:

- Under the rules of binomial nomenclature adopted by Carl Linnaeus, species names consist
always out of two parts (eg. Quercus robur). First part of the name (“Quercus”) is the
species genus (plural of genus is genera), and the second part (“robur”) is the specific name
of the species within that genus.

- There is a conveniently named function in stringr package that you can use to extract
words from a sentence.

- Package dplyr offers some helper functions that wrap some commonly used function calls
together in a more verbose-sounding function. Check the help for functions tally() and
count () and see how they can be useful for you.

- Functions mutate () and transmute () from dplyr package are used to create new columns.
- Check how can function top_n() be useful.

29 Learning Unit 9 - tidyverse

6.3 Exercise 3: Where to find a relict tree in Nijmegen? 6 LET’S PRACTICE

6.3 Exercise 3: Where to find a relict tree in Nijmegen?

Difficulty level - Medium

Picea omorika is an relict coniferous species from the tertiary period, and now it survives in
few canyons in the Dinaric Alps. However, despite its native range rarity, it is a very popular
ornamental tree. Find out which neighborhoods in Nijmegen have the most trees of Picea
omorika planted. Use data visualization to convey your message!

Task:

- Find out what neighborhoods have Picea omorika planted, and how many trees planted
there?

- Visualize your results. Add plot title and label the axes. Add plot subtitle and caption if
necessary.

- Bonus task: order the bars in the bar chart.

Hints:

- String value of the species name in the csv is “Picea omorika”. - Bar charts are a good way
of showing quantify of things per group.

- Depending on your data structure, you can use either geom_bar () or geom_col() to create
a bar chart. Check function help for more information.

- Don’t forget that you chain ggplot2 functions with a plus symbol +.

- Although making your plot pretty is secondary here, feel free to use a theme or to edit the
visual appeal of your plots if you have the time.

6.4 Exercise 4: Age range of trees

Difficulty level - Medium

Task:

For this task visualize the range of tree age values of each neighborhood using boxplots.
Boxplots are useful vizualization tool to see the spread of values. Boxplots center line
represents median value of the range. However, to make it more effective, order the boxes
in the plot by the median value, therefore you will need to calculate median tree age and
reorder the data before plotting.

Hints:

- To perserve information when summarizing data per group, use mutate ().

- Package forcats is useful to reorder factors.

- Function name to create boxplots is geom_boxplot ().

- Since there are many neighborhoods, the plot will look better if it’s rotated.

30 Learning Unit 9 - tidyverse

6.5 Exercise 5: Greenest Nijmegen neighborhoods 6 LET’S PRACTICE

6.5 Exercise 5: Greenest Nijmegen neighborhoods

Difficulty level - Medium /Difficult

We want to calculate here which neighborhood in Nijmegen is the greenest, i.e. which
has the most trees relative to the size of that neighboorhood. However, the data on the
neighborhood area is in a separate file, so we will need here to combine two datasets, per-
form calculations, and create the data visualization. The dataset you need is located in
data/nijmegen wijk_area.csv.

You can use base: :merge() or dplyr::*_join to combine the two data frames by common
column. It is not mandatory to use a tidyverse function in this section, only to perform the
task. Most useful type of a join in this case the inner join (inner_join()).

Task:

- Calculate tree density for Nijmegen neighborhoods, and present the results graphically
to show which ones have the most trees. There are around 20 neighborhoods in this dataset,
so you can include all of them in the graph.

Hints:

- Dutch word for ‘neighborhood’ is ‘wijk’.

- Unit for the neighborhood area is km™2.

- To calculate density, you want to divide the population by the area size.

- It might be difficult to perform this task in a single chain, so create as many variables you
need to finish the task.

- When your plot becomes too dense with long axis labels, you can use coord_f1lip() to flip
vertical coordinates to horizontal ones.

6.6 Exercise 6: When were the trees planted?

Difficulty level - Difficult

Trees fall in the Spermatophytes group, meaning that they are plants that produce seeds.
There are five groups of seed-producing plants, the cycads, ginkgo, conifers, gnetophytes,
and the largest groups - flowering plants.

For this task we want to see how many trees from each group planted per each decade. In
species list we only have coniferous trees, flowering trees, and the ginkgo tree - which has
only one species in the group. For simplicity, we can refer to the trees from flowering plants
group as deciduous trees. Below is a list of all coniferious genera included in the species list
which you can use to create a vector containing coniferous species.

Y

Conifer genera: “Abies”, “Cedrus”, “Chamaecyparis”, “Larix”, “Metasequoia”, “Picea”,
“Pinus”, “Pseudotsuga”, “Sequoiadendron”, “Taxodium”, “Taxus”, “Thuja”, “Tsuga”

31 Learning Unit 9 - tidyverse

https://en.wikipedia.org/wiki/Join_(SQL)

6.6 Exercise 6: When were the trees planted? 6 LET’S PRACTICE

Task:
- Calculate how many trees were planted in each decade from group of conifers, deciduous,
or ginkgo. Present your results visually.

To get you started, these are some of the important things you need to do:

- Get genus name.

- Get decade from the year.

- Reclassify genera so they belong to either conifers, ginkgo, or deciduous trees.
- Count number of trees planted in each decade from each group of trees.

- Visualize the results.

Hints:

- You can use nested if/else statements to rename multiple variables, or you can use a vec-
torised if version which is case_when().

- If you use function case_when(), read function help carefully since the examples are par-
ticularly useful.

- Decade can be calculated from the year relatively easy. If you are stuck, don’t be afraid to
search for solutions online.

- Remember that you can use more than one variable when grouping.

- Use ggplot faceting to show trends for different groups in separate plot panels. - Line graphs
are useful when showing trends over time. - Function facet_wrap() will use a common scale
for all panels. If it is difficult to see trends in panels where there are fewer trees, so set the
argument scales to scales = "free'".

This task may tricky to solve during the first day, but check the solution later to see one of
the ways to solve it.

32 Learning Unit 9 - tidyverse

Learning unit 10
Efficient R coding
Selwyn Hoeks

Contents
1 Learning goals 2
2 What is efficient code? 2
3 Live example: implementing efficient code 3
3.1 Packages required 4
3.2 Generating a large dataset 4
3.3 Calculating the Menhinick index, 6
3.4 Menhinick index: function 1 6
3.5 Menhinick index: function 2o 8
3.6 Menhinick index: function 3 9
4 General do’s and don’ts 10
5 Brief introduction of fastest data reading and writing 13
6 Brief introduction of parallel R code 14
7 Assignment 16
7.1 Create a hypothetical dataset, 16
7.2 Create a function to calculate the Shannon diversity index for a vector . . . 17
7.3 Create a function to calculate the Shannon diversity index for an entire matrix 18
7.4 Create a function to calculate the Shannon diversity index for all timesteps . 18

2 WHAT IS EFFICIENT CODE?

1 Learning goals

After this learning unit is completed, you should be able to:
Start thinking about how and when to implement the concept of writing efficient code

e In terms of computational resources
o In terms of execution time
« In terms of coding effort (?7)

Please note that do to the nature of this topic I chose to make the live coding part a bit
longer compared to the assignment. In order to support my main goal to show a selection
of general concepts of writing fast and more effecient code.

2 What is efficient code?

If you are familiar with other programming languages you might have noticed that R is a
very dynamic and versatile language. Almost anything can be modified after it is created.
Which is not the case for other languages like Java, JavaScript, C, C++ or Python. It is
obvious that this comes with many advantages, making R a very popular tool in science
and general data analysis. This unfortunately this comes also at a cost, compared to other
languages (base) R usually does not earn many awards when it comes to efficiency.

Generally the effeciency () is expressed by the ratio between the amount of work done (W)
per unit effort (Q) (see equation below).

_w
=70

In programming or data analysis W can be quantified by the operations required, e.g.:

» Reading a specific number of lines in a file
e Running some operations on the dataset

o (alculating necessary statistics

» Plotting results

All of which require a certain effort (Q). In order to simply increase our efficiency, we can
reduce the number of operations required (reducing W), by carefully checking whether all
actions in our code are required. However, in cases where we cannot reduce the amount of
operations needed, we will need to improve the efficiency by reducing the amount of effort
(Q) needed for each of our operations.

Q can, amongst other things, be defined as a combination of:

o Computation time
— Amount of time needed to run code
o Resources used
— Required hardware, possible to run on small laptop or expensive powerful pc

2 Learning Unit 10 - Efficient R coding

3 LIVE EXAMPLE: IMPLEMENTING EFFICIENT CODE

« Coding time/effort
— Investment vs gains, is it in our interest to spend time on optimizing code?

For the average R programmer, the first two points are in most cases the bottleneck in
increasing efficiency. Especially compared to other languages, which generally require more
coding time. Besides the performance limitations due to design and implementation of R,
most issues have to do with the fact that most ‘slow R code’ is slow simply because it’s
poorly written. As the majority of people use R as a tool to understand data, they consider
code efficiency a secondary objective. “It’s more important to get an answer quickly than
to develop a system that will work in a wide variety of situations”. Although this might be
seen as a issue, it also means that is most cases it is relatively easy to make R code much
faster, as we’ll see in the following exercises.

For R there are some easy rules to follow to help us make code run as efficient as possible:

e Don’t grow objects
— Do not attach new elements iteratively to an object (e.g. rbind)
Avoid loops
— Use vectorized functions, functions that can operate over an entire vector or ma-
trix
— The apply family can also considered loops and are equally bad in performance
» Consider the use of packages with more efficient implementations of functions
— Brief introduction at the end of this learning unit (fst package)
Code parallelization
— Brief introduction at the end of this learning unit (mclapply package)
Use of different languages combined with R
— Brief introduction at the end of this learning unit (Rcpp package) just to show
it can be faster and many packages you download and install use it without you
knowing it.

Besides making code run as fast and as efficient as possible, we also need to consider the
time we spend on writing the actual code. For example, if a basic task can be written in
R relatively fast without any effort and the resulting code is very inefficient it might still
provide the fastest method to reach your goal. However, when the code needs to be used
many times and involves heavy computations, a little more effort will help us increase our
overall efficiency!

Another way to increase to speed of writing the actual code might be to get to learn our IDE
(integrated development environment) of choice, in our case this is RStudio. For example,
see: https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts to learn
some handy RStudio shortcuts (some of which will also be demonstrated in class).

3 Live example: implementing efficient code

Here we will run through some example code and try to make it run more efficient by reducing
the amount of computation time required to execute. This example code involves calculating

3 Learning Unit 10 - Efficient R coding

https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

3.1 Packages required 3 LIVE EXAMPLE: IMPLEMENTING EFFICIENT CODE

the Menhinick’s index for a larger data set. The formula to calculate the Menhinick’s index
is shown below:

M=

=

where:

o n = Number of species
o N = Total number of individuals

Next we will discuss the technical implementation of a method computing the Menhinick’s
index on a large data set which we will generate ourselves, similar to learning unit ...

3.1 Packages required

As we have seen in the previous learning unit, R packages in some cases provide a large
advantage of base R functions. In this learning unit we will be using the following packages:

library(microbenchmark) # evaluating the computing time of R code
library(fst) # fast, easy and small data reading and writing
library(parallel) # for using the parallel wversion of lapply

3.2 Generating a large data set

As we can see from equation 2, the Menhinick’s index requires a data set containing species
abundances. In reality these are of course recorded in the field by several observation methods.
Think of bird counts, fish population inventories, species monitoring or vegetation mappings.

Here we will create our own data set which contains a set number of species (n_species).
These species were recorded at several time steps (n_timesteps). Multiplying n_species
by n_timesteps gives us the total number of records in the data set.

n_species <- le4 # set number of specties to comnsider
n_timesteps <- 1le3 # set number of timesteps to consider
total_length <- n_species * n_timesteps # sample length

generating a vector containing all of our species abundances
random_species_abundances <- sample(1:350,
size = total_length,
replace = T)

Next we will place our long vector (random_species_abundances) containing all records in
a matrix, in this matrix the columns will be the time steps. Our matrix row will be the
species.

4 Learning Unit 10 - Efficient R coding

3.2 Generating a large datagetLIVE EXAMPLE: IMPLEMENTING EFFICIENT CODE

matriz: columns are timesteps, rows are species—-specific abundances
m <- matrix(random_species_abundances, nrow = n_species, ncol = n_timesteps)
head(m[1:10,1:10])

#i#t (.11 [,2] (,3] [,4] [,8] L,e] [,71 [,8] [,9] [,10]
[1,] 185 61 122 213 326 224 208 238 63 348
[2,] 45 308 60 8 22 270 90 244 50 129
[3,] 348 153 180 314 218 158 67 117 322 143
[4,] 154 124 82 196 131 163 163 218 107 98
[5,] 258 283 190 29 59 73 229 179 95 72
[6,] 248 52 3 304 238 68 226 134 126 269

We can subset the matrix by for example getting all the abundances recorder for species 1

for first 100 timesteps. We do this by selecting the first row and then the 1:100 elements in
that row.

m[1,1:100]

#i# [1] 185 61 122 213 326 224 208 238 63 348 310 29 173 339 21 233 300
[18] 323 93 237 175 175 102 173 265 160 26 181 24 106 321 199 58 25
[35] 29 163 202 97 232 191 171 331 301 205 102 201 187 184 71 236 292
[52] 196 108 123 275 221 226 74 79 46 350 39 203 136 283 42 111 193
[69] 7 140 296 38 164 43 123 346 123 306 205 81 185 216 148 236 185
[86] 304 87 272 200 276 25 103 53 314 99 19 309 327 147 194

plot abundance of species 1 for first 100 timesteps
plot(1:100,m[1,1:100],type="1",
xlab="time",ylab="species abundance")

o

m p—

™ f\ ﬂ
)
o o
S & 7
ie]
C
S _|
o)
© g V
o 4 7]
(&)
)
L _|
(2]

o _|

o

o p—

[[[[[[
0 20 40 60 80 100
time

) Learning Unit 10 - Efficient R coding

3.3 Calculating the Menhin@k Idékk EXAMPLE: IMPLEMENTING EFFICIENT CODE

3.3 Calculating the Menhinick index

In this section we will create a function for calculating the Menhinick index. However, first
we will start with calculating it for a single timestep the make sure it is working correctly. In
order to do so, we will need to extract the first column, which contains all species abundances
at t = 1. After getting all of the abundances for the first-time step m_t1 we will need to
calculate N and n. For the time being we will ignore most of the base R functions, this is
done with the purpose of illustrating R performance considering multiple implementation
methods. And after obtaining both N and n, we can proceed to compute MI.

example of Menhinick's index at timestep = 1
m tl = m[,1] # extract abundaces at t = 1

compute total number of individuals (N)
N <=0
for(value in m_t1) {

N <- N + value

}
print (N)

[1] 1757192

compute number of species (n) without using R functions
n<-0
for(value in m_t1) {
n<-n+1
+
print(n)

[1] 10000

compute of Menhinick's index at t = 1
MI <-n /N~ 0.5
print (MI)

[1] 7.543804

3.4 Menhinick index: function 1

Next, we will create our function to easily calculate the Menhinick index for all timesteps.
This function will implement the same method as we just created, it adds however a loop to
loop over all time steps (columns) in our matrix.

MI vl <- function(m,n_timesteps) {

MIs <- c() # create wector to store results

6 Learning Unit 10 - Efficient R coding

3.4 Menhinick index: functidn LIVE EXAMPLE: IMPLEMENTING EFFICIENT CODE

loop over ezxt_cols
for(i in 1:n_timesteps) {

ext_col <- m[,i] # extract col from matriz

calculate N

N <=0

for(value in ext col) {
N <- N + value

}

calculate n

n<-0

for(value in m_t1) {
n<-n+1

¥

MI <-n/ (N~ 0.5) # calculate MI
MIs <- c(MIs,MI) # store MI in wvector

return(MIs) # return results

3

calculate just for time step 1
MI_vi(m,1)

[1] 7.543804

calculate for the first 10 time steps
MI_v1(m,10)

[1] 7.543804 7.544235 7.568745 7.546970 7.552347 7.538293 7.543679
[8] 7.543774 7.526534 7.551836
Now we are ready to test the performance of our function on the entire dataset:

print(n_timesteps)

[1] 1000

microbenchmark(MI_v1(m, n_timesteps), times = 10)

Unit: milliseconds

expr min 1q mean median uq

MI vi(m, n_timesteps) 447.8825 451.2895 458.9715 458.9247 461.7376
#it max neval

7 Learning Unit 10 - Efficient R coding

3.5 Menhinick index: functidn 2IVE EXAMPLE: IMPLEMENTING EFFICIENT CODE

480.0011 10
In the implementation above we violate some of the basic rules in writing efficient code.

1. We grow objects, in each loop the calculated MI is stored in MIs MIs <- c¢(MIs,MI)
store MI in vector, no vector is pre-allocated. This could be done by:

allocating a vector with Os

MIs <- ¢(0,0,0,0,0,0,0,0,0,0,0)

replace the first 0 with result MI
MIs[1] <- 7.46

print (MIs)

[1] 7.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This way R does not have to attach a new element to the vector at each iteration. The
length of the vector will remain the same, the values within it will be replace by our results.

2. We do not consider any vectorized functions like calculating the n by using the function
sum(), instead we are looping over our vector and adding up all values we encounter
during the iteration.

3.5 Menhinick index: function 2

This implementation can be improved significantly by removing for example the inner loops
and replacing them with regular base R functions. Besides, improving the performance it
also increases the readability of our code. In addition to replacing most of the loops in our
function we can also replace operators like = * + by base R functions, in our case we replace
N = 0.5 by sqrt(N), the performance difference is shown below.

show tmpact of N70.5 vs sqrt(N)

microbenchmark(sqrt(random_species_abundances),
random_species_abundances™0.5,
times = 10)

Unit: milliseconds

#i# expr min 1q mean median
sqrt(random_species_abundances) 69.16698 69.30056 70.10182 69.63933
random_species_abundances™0.5 702.27794 707.57103 719.63025 713.92481
#it uq max neval

70.17823 74.44967 10

730.33128 753.72375 10

R functions perform better generally than manual use of arithmetic operators. Below the
implementation of our improved function:

MI_v2 <- function(m,n_timesteps) {

8 Learning Unit 10 - Efficient R coding

3.6 Menhinick index: functidn BIVE EXAMPLE: IMPLEMENTING EFFICIENT CODE

create wector to store results
MIs <- c()

loop over ext_cols
for(i in 1:n_timesteps) {

ext_col <- m[,i] # extract ext_col from matriz

N <- sum(ext_col) # calculate N, loop replaced

n <- length(ext_col) # calculate n, loop replaced
MI <- n / sqrt(N) # calculate MI

MIs <- c(MIs,MI) # store Tow sum inm wvector

return results, vector with row sums
return(MIs)

MI vl and MI_v2 same results?
all.equal(MI_vi(m,n_timesteps),MI_v2(m,n_timesteps))

[1] TRUE

show performance between functions: vl and v2
microbenchmark(MI_v1(m,n_timesteps),
MI_v2(m,n_timesteps),
times = 10)

Unit: milliseconds

#it expr min 1qg mean median uq
MI vi(m, n_timesteps) 447.89524 448.6557 456.00642 453.19050 459.87643
MI v2(m, n_timesteps) 29.40031 29.4662 35.69261 33.24082 37.72503
max neval

479.91794 10

53.10194 10

large performance increase

3.6 Menhinick index: function 3

This will be our final function. Because R performance is generally not that good when
using loops, it is best to think as much as possible about methods that will stay away from
loops. Performance of the majority of standard base R protocols is the highest when they
involve a direct computation on a vector. Which makes for example dividing all elements in
two vectors directly much faster than looping through all elements and dividing them one
by one. The implementation below fully removes all loops from our function.

9 Learning Unit 10 - Efficient R coding

4 GENERAL DO’S AND DON’TS

MI_v3 <- function(m,n_timesteps) {

calculate n for all cols
n_all ext cols = nrow(m)
does assume all species every time present

calculate N for all cols
N_all ext cols <- colSums(m)

calculate MI and return results
return(n_all ext_cols / sqrt(N_all ext _cols))

MI_ v2 and MI_v3 same results?
all.equal(MI_v2(m,n_timesteps),MI_v3(m,n_timesteps))

[1] TRUE
yes!

Check the performance of our final function (compared to the other implementations)

show performance between functions: wvl, v2 and v3
microbenchmark(MI_v1(m,n_timesteps),
MI_v2(m,n_timesteps),
MI_v3(m,n_timesteps),
times = 10)

Unit: milliseconds

#it expr min 1q mean median
MI_vi(m, n_timesteps) 449.802093 451.696369 463.637858 459.930994
MI_v2(m, n_timesteps) 29.719764 32.248369 35.607471 32.284848
MI_v3(m, n_timesteps) 9.491938 9.496096 9.791414 9.513956
uq max neval

469.620864 502.31369 10

39.920962 52.90319 10

#it 9.534547 12.29682 10

conclusion: the way R functions are written combined with vectorization enables better
performance

4 General do’s and don’ts

When dealing with large datasets there are a few thinks to keep in mind. This starts already
with the method we store our data e.g.:

10 Learning Unit 10 - Efficient R coding

4 GENERAL DO’S AND DON’TS

how is the performance considering different data types
head(m[,1:10]) # our matriz

#it (,11 [,2] [,3] [,4] [,5] [,6]1 [,71 [,8] [,9] [,10]
[1,] 185 61 122 213 326 224 208 238 63 348
[2,] 45 308 60 8 22 270 90 244 50 129
[3,] 348 153 180 314 218 158 67 117 322 143
[4,] 154 124 82 196 131 163 163 218 107 98
[6,] 258 283 190 29 59 73 229 179 95 72
[6,] 248 52 3 304 238 68 226 134 126 269

class(m)

[1] "matrix"

df <- as.data.frame(m) # matriz to data.frame
class(df)

[1] "data.frame"
head(df[,1:10]) # df has nice column names

#i# Vi v2 V3 V4 V5 V6 V7 V8 V9 V10
1 185 61 122 213 326 224 208 238 63 348
2 45 308 60 8 22 270 90 244 50 129
3 348 153 180 314 218 158 67 117 322 143
4 154 124 82 196 131 163 163 218 107 98
5 268 283 190 29 59 73 229 179 95 72
6 248 52 3 304 238 68 226 134 126 269

The code below shows the difference in performance between for example a matrix and a
similar data.frame

show performance between v1l, v2 and v3 for df and m

microbenchmark(MI_vi(m,n_timesteps),
MI_v2(m,n_timesteps),
MI_v3(m,n_timesteps),
MI_v1(df,n_timesteps),
MI_v2(df,n_timesteps),
MI_v3(df,n_timesteps),
times = 5)

Unit: milliseconds

#it expr min 1q mean median
MI_vi(m, n_timesteps) 451.022577 451.813732 467.07602 462.744383
MI_v2(m, n_timesteps) 29.757642 31.729238 40.18199 33.832489
MI_v3(m, n_timesteps) 9.465679 9.490772 9.55359 9.518986
MI_vi(df, n_timesteps) 432.667759 432.780740 437.68453 438.513402

11 Learning Unit 10 - Efficient R coding

4 GENERAL DO’S AND DON’TS

MI_v2(df, n_timesteps) 15.686000 15.752928 16.13643 15.779943
MI_v3(df, n_timesteps) 34.030798 34.482899 40.94444 36.445480
#i# uq max neval

465.219926 504.579479
34.312135 71.278452
9.537594 9.754921
441.546527 442.914237
15.818906 17.644396
49.704869 50.058174

(S2 G2 NG NG NG B¢]

Conclusion: if possible (all data has a similar format) store data in a matrix or vector. If
not use data.frames. Although data.frames easier to use e.g. calling variables using names,
combining data classes they are relatively slow when used in large computations.

Additionally, the method used to extract or subset data can greatly influence performance
when performed regularly:

different methods to extract the same data point:
df [32, 11]
[1] 11
df$v11[32]

[1] 11
df [[c(11, 32)]1]

[1] 11
df [[11]1] [32]

[1] 11
.subset2(df, 11)[32]

[1] 11

show performance between methods
microbenchmark(

df [32, 11],

df$vi1[32],

df [[c(11, 32)1],

df [[11]1][32],

.subset2(df, 11)[32],

times = 10

)

Unit: nanoseconds
#i# expr min 1q mean median ug max neval
df [32, 11] 16840 17831 21614.0 18074.5 19193 51873 10

12 Learning Unit 10 - Efficient R coding

5 BRIEF INTRODUCTION OF FASTEST DATA READING AND WRITING

#i# df$v11[32] 1056 1156 2264.7 1335.5 1840 9742 10
#i# df [[c(11, 32)]] 3689 3837 4788.7 4156.0 4556 10117 10
df [[11]]1[32] 3352 3739 8244.3 3978.0 5350 44774 10

.subset2(df, 11)[32] 232 266 339.3 296.0 316 775 10

Conclusion: for large datasets, think of the best approach to extract values or perform
computations. Additionally, all simpler operations performed in a large function can add
significantly to our computation time, even simple things like extracting a value.

show performance for matriz compared to data.frame
microbenchmark (

df [32, 11],

m[32, 11],

times = 10

)

Unit: nanoseconds

#i# expr min 1q mean median uq max neval
df[32, 11] 16679 16778 32501.7 17687.5 19369 159275 10
m[32, 11] 1562 196 814.2 2565.0 366 5664 10

5 Brief introduction of fastest data reading and writing

In the section ‘What is efficient code?’ we discussed that part of efficient code also has to do
with the amount of computer resources used. Although we won'’t go in to much detail on this
subject (we won’t discuss memory usage and processor utilization), something quite easily
presentable is the amount of hard disk space we need to store our data. The fst package
(https://www.fstpackage.org/) is one of many packages that allows for fast and small data
writing. An example is given below:

this code writes our data.frame df
dim(df)
[1] 10000 1000

we didn't import or ezxzport any data yet
and haven't our working directory
#setwd ('~/Desktop')

first we try the regular implementation
system.time(write.csv(df, 'simulated data LU10.csv'))

#it user system elapsed
3.419 0.083 3.587

for this we use system.time() around the function to check
the time required for writing our csv

13 Learning Unit 10 - Efficient R coding

https://www.fstpackage.org/

6 BRIEF INTRODUCTION OF PARALLEL R CODE

On my laptop this took 4.960 seconds, the .csv file is 37 mb. (in this case we use
system.time () around the function to check the time required for writing our .csv).

now we use the package fst to write our data set
system.time(write.fst(df, 'simulated data_LU10.fst'))

#it user system elapsed
0.085 0.024 0.114

On my laptop this took 0.124 second, the .fst file is only 15.8 mb! In this case we both
saved on computation time and resources! However, do take in mind that the newly created
.fst file can only be loaded by people also software similar to R with implementations
similar to the . fst package (e.g. THE .fst CAN NOT BE USED IN EXCEL OR SIMILAR
SOFTWARE). Nonetheless, image data sets of multiple gb’s, it can sometimes take more
than 10 minutes to load or save a file!

load/read both files and check if they are the same
csv_read data = read.csv('simulated data LU10.csv')
fst_read_data = read.fst('simulated data LU10.fst')

as you might have noticed the read.fst is also faster

show contents of first 20 items in fist column
csv_read_data$Vi[1:20]

[1] 185 45 348 154 258 248 74 105 58 52 230 237 246 188 173 175 330
[18] 23 202 291

fst_read _data$Vi[1:20]

[1] 185 45 348 154 258 248 74 105 58 52 230 237 246 188 173 175 330
[18] 23 202 291

6 Brief introduction of parallel R code

Since All modern computers contain processors with more than 1 core, we can do multiple
calculations at once! To illustrate the benefits of parallel computation we could do the
following;:

split our matriz (m) in 4 pieces or chucks

show size of matriz
dim(m)

[1] 10000 1000

14 Learning Unit 10 - Efficient R coding

6 BRIEF INTRODUCTION OF PARALLEL R CODE

set the number of columns per chuck
n_cols_to_split = ncol(m)/4

split matriz

ml = m[,1:n_cols_to_split]

m2 = m[,(n_cols_to_split+1):(n_cols_to_split*2)]
m3 = m[,(n_cols_to_split*2+1):(n_cols_to_split#*3)]
m4 = m[,(n_cols_to_split*3+1):ncol(m)]

put all chucks in a list
m list = list(ml,m2,m3,m4)

Simple wversion of MI_v2
MI_v2_simple <- function(m) {
return(MI_v2(m,ncol(m)))

}

apply function to all matrices in our list using lapply
resultl <- lapply(m_list,MI_v2_simple)

apply function to all matrices im our list using lapply
result2 <- mclapply(m_list,MI_v2_simple,mc.cores=4)

same result?
all.equal(resultl,result?)

[1] TRUE
yes!

is the parallel version faster

microbenchmark(
lapply(m_list,MI_v2_simple),
mclapply(m_list,MI_v2_simple,mc.cores=4),
times = 10

)

Unit: milliseconds

expr min 1q mean
lapply(m_list, MI_v2_simple) 29.03638 40.19885 68.55576
mclapply(m_list, MI_v2_simple, mc.cores = 4) 86.02531 109.58783 148.63802
#it median uq max neval

54.00502 92.08787 127.8602 10
143.17915 192.15941 204.3175 10

15 Learning Unit 10 - Efficient R coding

7 ASSIGNMENT

nol?

we need a larger data set

n_species <- le2 # set number of spectes to consider
n_timesteps <- 1le2 # set number of timesteps to constder
total_length <- n_species * n_timesteps # sample length

create random datasets in list
this list contains 10 chunks of random data
m list = list()
for(i in 1:20) {
m_list[[i]] <- matrix(sample(1:350,size = total_length, replace = T),
nrow = n_species,
ncol = n_timesteps)

is running in parallel faster?!!

microbenchmark(
lapply(m_list,MI_v2_simple),
mclapply(m_list,MI_v2_simple,mc.cores=4),

times =1
)
Unit: milliseconds
expr min 1q
lapply(m_list, MI_v2_simple) 3.653926 3.653926
mclapply(m_list, MI_v2_simple, mc.cores = 4) 40.949136 40.949136
mean median uq max neval
3.653926 3.653926 3.653926 3.653926 1
40.949136 40.949136 40.949136 40.949136 1
yeah!!

7 Assignment

Will have more information once I know the assignment is okay. Code will be cleaned and
included in the third document required once ready. The unfinished and not student friendly
version of the code can be found in LU10_Assignmentl 2019-04-14.R.

7.1 Create a hypothetical data set

Create a hypothetical data set in a 1ist () format. In which:

16 Learning Unit 10 - Efficient R coding

7.2 Create a function to calculate the Shannon diversity index for a vedtorASSIGNMENT

o Each list entry contains a matrix and represents a abundance count at a specific
timestep

o Columns in the matrix abundance counts for specific locations

« Rows are species-specific abundances for each of the locations (similar to the data set
we created in the live coding example, however stored in a list format for different
locations)

The following code can be used to create the testing dataset:

n_locations <- le2 # set number of locations to constder
n_species <- 1le3 # set number of specties to consider
n_timesteps <- 5 # set number of timesteps to consider

create list in which

— each list entry contains data for a single timestep

— columns in each list entry contain abundance for a single location
- rows in each list entry represent the species

abundance list = list()

for(i in 1:n_timesteps){

abundance_list[[i]] <- matrix(sample(1:350, size = n_species * n_locations, replace

ncol=n_locations,
nrow=n_species)

7.2 Create a function to calculate the Shannon diversity index for
a vector

Before moving to the entire data set we will create a function to calculate the Shannon
diversity index for one specific location and one specific time step.

o Show how to extract data for a specific location and timestep. Store the extracted
values in a vector.

o (Calculate the Shannon diversity index for the extracted vector. The Shannon diversity
index (H) is another index that is commonly used to characterize species diversity in a
community. Shannon’s index accounts for both abundance and evenness of the species
present. The proportion of species is relative to the total number of species (pi) is
calculated, and then multiplied by the natural logarithm of this proportion (Inpi). The
resulting product is summed across species, and multiplied by -1. The equation for
the Shannon diversity index can be found on: http://www.tiem.utk.edu/~gross/bioed/
bealsmodules/shannonDI.html

17 Learning Unit 10 - Efficient R coding

http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html
http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html

7.3 Create a function to calculate the Shannon diversity index for an emtird SGHGNMENT

7.3 Create a function to calculate the Shannon diversity index for
an entire matrix

« Now modify the function created in the previous assignment to calculate the Shannon
diversity index for all locations in the matrix of the first timestep (the entire first list
entry).

o Is the function we just created for the entire matrix the fastest implementation you
can think of?

o If so, consider the inefficient implementations we avoided

o If not, think about the various lines of code in our newly created function, which can
be altered to increase performance?

7.4 Create a function to calculate the Shannon diversity index for
all timesteps

o First try to make it as fast as possible without implementing the parallel function
mclapply ()

« How does performance differ when using either a for loop (for(i in 1:length(list)){})
or lapply?

« Once satisfied, try mclapply () on the list instead of the regular lapply ()

o Is the parallel version faster?

o If not, increase the size of the simulated data, do we see a point at which our data set
reaches a certain size and our parallel version becomes faster? If so, does this apply
to smaller datasets as well?

18 Learning Unit 10 - Efficient R coding

	Background
	Learning goals
	Starting R and RStudio
	The console window and some basic operations
	Assigning objects
	Creating more complex objects: vectors
	Exercise 1

	Creating more complex objects: matrices
	Exercise 2

	Functions
	Finding help on functions and specifying arguments
	Exercise 3
	Exercise 4

	The source window
	Saving scripts and quitting R
	Exercise 5

	Writing readable code
	Exercise 6

	Additional practicing
	Learning goals
	Functions we are going to use
	The basics
	Object types
	Checking the type of an object
	Converting between object types
	Making vectors with multiple object types
	Logical operations
	Strings
	Factors
	Data structures 2
	Indexing by name
	Data frames
	Arrays
	Lists

	Making subsets of your data
	Sequences
	Sorting and ordering

	Exercises
	Learning unit goals
	The workspace and working directory
	Adding & removing objects
	Saving the workspace and object(s)

	Reading data files into R
	R converts characters into factors
	Reading Dates and Times from Files

	Writing files to a directory
	Folder structure and paths
	Common errors when reading files
	Common issues when writing files

	Recap from LU2: Class = data.frame
	Columns & rows
	Sorting

	Dimensions
	Adding a new column to a data frame
	Rename the columns of a data frame
	Checking the top and bottom
	Subsetting
	Specific columns & rows
	Subsetting using logical operations
	Subsetting with subset()

	Summary statistics by column
	Contingency tables
	Duplicates and missing values
	Join multiple datasets
	Concatenate datasets horizontally or vertically
	Merging datasets by column(s)
	Setting the key column
	Merging with duplicates
	Merging with NA values
	Types of join

	Recap
	Interactive exercise
	Exercises
	Introduction
	The Lizard dataset
	The Owl dataset
	The Owl and Parent IDs datasets
	The Rikz dataset
	Optional

	Learning Unit Goals
	Functions we are going to use
	Conditional statements
	IF statement
	LOOPS
	While loops
	For loops
	Nested loops
	Repeat loops

	Exercises
	Difficulty level = Basic
	Difficulty level = Medium
	Difficulty level = Difficult

	Learning goals
	Functions we are going to use
	In this Learning Unit
	The basics
	For loops and apply
	Lapply and sapply
	Tapply and aggregate
	Debugging
	Where to look for help
	Most common errors
	An example

	Exercises
	Learning goals
	Graphs
	What type of graphs are there? And when to use which?
	Generating informative graphs
	Making graphs more attractive
	Title
	Axis label
	Axis range
	Size
	Color
	Symbols and lines
	Adding additional points or lines
	Legend
	Adding lines
	Additional text
	Multi-plot figure
	Saving graphs

	Live example: Trees in Nijmegen
	Basic graphs
	Histogram
	Scatter plot
	Line plot
	Box plot
	Bar plot
	Dot chart

	Making graphs more attractive
	Title
	Axis label
	Change point type
	Change size
	Add lines
	Additional text
	Color
	Legend
	Multi-plot
	Saving the image

	Individual exercises
	Questions

	Learning goals
	Pseudocode
	What it is and why it is useful
	Making Dutch sandwiches
	An example: the life cycle of Boloria eunomia

	Writing functions in R
	What is a function?
	Reasons to write functions
	Structure and syntax of a function
	Error messages
	Global and local variables
	Calling functions

	Cooking recipe: How to write a function?
	Bonus for the brain: Efficiency and tips
	Functions can be arguments too
	Calling functions in the body
	Apply user-defined functions
	Writing stable functions

	The interactive part of the class
	Exercises
	(Difficulty: easy)
	(Difficulty: easy)
	(Difficulty: easy)
	(Difficulty: intermediate)
	(Difficulty: intermediate)
	(Difficulty: hard)
	(Difficulty: hard)

	Learning Unit Goal:
	Functions we are going to use
	The basics
	Let's learn the basic functions
	Simulate random values
	p functions
	d functions
	Sample random values from a vector
	Reshuffle a vector
	Reproducibility

	Now let's practice what we learnt
	Estimate the probability of an event occurring using a simulation
	Create a function that generates a random password
	Estimate the distribution of possible population size of a species given a few information
	Simulate the population growth and fluctuations with a given level of exploitation and plot the temporal trend
	The virtual ecologist approach

	Learning unit goals
	What are R packages
	Where to find R packages
	How to install and load R package

	What is tidyverse?
	What is tidy data?
	Packages in the tidyverse meta-package

	Working with tidyverse
	filter() and select()
	Chaining operations together with pipes
	mutate(), transmute(), and arrange()
	stringr package
	Combining multiple functions
	group_by and summarize

	Using the ggplot2 package
	Basic building blocks
	Putting it together
	Building blocks summary
	Customizing the graphic

	Let's practice
	Exercise 1: Most common trees in Nijmegen.
	Exercise 2: Most common tree genera in Nijmegen
	Exercise 3: Where to find a relict tree in Nijmegen?
	Exercise 4: Age range of trees
	Exercise 5: Greenest Nijmegen neighborhoods
	Exercise 6: When were the trees planted?

	Learning goals
	What is efficient code?
	Live example: implementing efficient code
	Packages required
	Generating a large data set
	Calculating the Menhinick index
	Menhinick index: function 1
	Menhinick index: function 2
	Menhinick index: function 3

	General do's and don'ts
	Brief introduction of fastest data reading and writing
	Brief introduction of parallel R code
	Assignment
	Create a hypothetical data set
	Create a function to calculate the Shannon diversity index for a vector
	Create a function to calculate the Shannon diversity index for an entire matrix
	Create a function to calculate the Shannon diversity index for all timesteps

